EmbeddedRelated.com
The 2024 Embedded Online Conference

Getting Started with the Microchip PIC® Microcontroller

Luther Stanton March 11, 2024

This first post of a five part series looks at the available hardware options for getting started with Microchip 8-bit PIC® Microcontroller, explores the MPLAB® X Integrated Development Environment and walks through setting up a project to expose the configured clock to an external pin and implement a single output GPIO to light an LED.


Make Your Own MCU Boards (2023 Teardown Conference)

Nathan Jones March 7, 2024

Ditch the development boards! Products like the Nucleo development boards serve a wonderful purpose, but they’re ill-suited for projects that need to be small and cheap, such as hobby projects or products just beginning a production run. In this talk (a recording from the 2023 Teardown Conference), you’ll learn how to put a microcontroller or other custom circuit on a PCB a little larger than a stick of gum for less than $3 a board.


Getting Started With Zephyr: Writing Data to EEPROM

Mohammed Billoo December 6, 20235 comments

In this blog post, I show how to implement a Zephyr application to interact with EEPROM. I show how the Zephyr device driver model allows application writers to be free of the underlying implementation details. Unfortunately, the application didn't work as expected, and I'm still troubleshooting the cause.


Getting Started With Zephyr: Saving Data To Files

Mohammed Billoo October 31, 2023

In this blog post, I show how to implement a Zephyr application to mount a microSD card, create a new file on the microSD card, and write data to it. The lessons learned from such an application can be helpful for devices out in the field that need to write data to off-board memory periodically, especially in cases where Internet access may be sporadic.


Creating a Hardware Abstraction Layer (HAL) in C

Jacob Beningo October 23, 20233 comments

In my last post, C to C++: Using Abstract Interfaces to Create Hardware Abstraction Layers (HAL), I discussed how vital hardware abstraction layers are and how to use a C++ abstract interface to create them. You may be thinking, that’s great for C++, but I work in C! How do I create a HAL that can easily swap in and out different drivers? In today’s post, I will walk through exactly how to do that while using the I2C bus as an example.


What does it mean to be 'Turing complete'?

Nathan Jones October 16, 20233 comments

The term "Turing complete" describes all computers and even some things we don't expect to be as powerful as a typical computer. In this article, I describe what it means and discuss the implications of Turing completeness on projects that need just a little more power, on alternative processor designs, and even security.


Getting Started With Zephyr: Devicetree Overlays

Mohammed Billoo September 25, 2023

In this blog post, I show how the Devicetree overlay is a valuable construct in The Zephyr Project RTOS. Overlays allow embedded software engineers to override the default pin configuration specified in Zephyr for a particular board. In this blog post, I use I2C as an example. Specifically, I showed the default I2C pins used for the nRF52840 development kit in the nominal Zephyr Devicetree. Then, I demonstrated how an overlay can be used to override this pin configuration and the final result.


Are We Shooting Ourselves in the Foot with Stack Overflow?

Miro Samek September 8, 20234 comments

Most traditional, beaten-path memory layouts allocate the stack space above the data sections in RAM, even though the stack grows “down” (towards the lower memory addresses) in most embedded processors. This arrangement puts your program data in the path of destruction of a stack overflow. In other words, you violate the first Gun Safety Rule (ALWAYS keep the gun pointed in a safe direction!) and you end up shooting yourself in the foot. This article shows how to locate the stack at the BEGINNING of RAM and thus point it in the "safe" direction.


nRF5 to nRF Connect SDK migration via DFU over BLE

Mike Voytovich September 7, 20232 comments

This writeup contains some notes on how I was able to migrate one of my clients projects based on the nRF5 SDK, to nRF Connect SDK (NCS) based firmware, via a DFU to devices in the field over BLE.


C to C++: 5 Tips for Refactoring C Code into C++

Jacob Beningo July 23, 20235 comments

The article titled "Simple Tips to Refactor C Code into C++: Improve Embedded Development" provides essential guidance for embedded developers transitioning from C to C++. The series covers fundamental details necessary for a seamless transition and emphasizes utilizing C++ as a better C rather than diving into complex language features. The article introduces five practical tips for refactoring C code into C++. Replace #define with constexpr and const: Discouraging the use of #define macros, the article advocates for safer alternatives like constexpr and const to improve type safety, debugging, namespaces, and compile-time computation. Use Namespaces: Demonstrating the benefits of organizing code into separate logical groupings through namespaces, the article explains how namespaces help avoid naming conflicts and improve code readability. Replace C-style Pointers with Smart Pointers and References: Emphasizing the significance of avoiding raw pointers, the article suggests replacing them with C++ smart pointers (unique_ptr, shared_ptr, weak_ptr) and using references


Introduction to Microcontrollers - Beginnings

Mike Silva August 20, 201314 comments

Welcome to this Introduction to Microcontroller Programming tutorial series. If you are looking to learn the basics of embedded programming for microcontrollers (and a bit of embedded hardware design as well), I hope these tutorials will help you along that journey. These are my first postings here, and I am writing this tutorial series because over the years I have seen countless newbies asking the same questions and tripping over the same stumbling blocks, and I thought I might be able to...


Analyzing the Linker Map file with a little help from the ELF and the DWARF

Govind Mukundan December 27, 201522 comments

When you're writing firmware, there always comes a time when you need to check the resources consumed by your efforts - perhaps because you're running out of RAM or Flash or you want to optimize something. The map file generated by your linker is a useful tool to aid in the resource analysis. I wanted to filter and sort the data generated in an interactive way so I wrote a C# WinForms application that reads the data from the map and presents it in a list view (using the awesome


Introduction to Microcontrollers - Driving WS2812 RGB LEDs

Mike Silva November 14, 201330 comments

This tutorial chapter is a bit of a detour, but I think an interesting and useful one.  It introduces a bit of assembly language programming, and demonstrates bit-banging a tight serial data protocol.  And it deals with RGB LEDs, which are just very fun in their own right, especially these new parts.  So I thought I'd post this to give readers time for some holiday lighting experimenting.

Back To The Future

Remember how we started this...


Introduction to Microcontrollers - Interrupts

Mike Silva September 18, 20136 comments

It's Too Soon To Talk About Interrupts!

That, at least, could be one reaction to this chapter.  But over the years I've become convinced that new microcontroller programmers should understand interrupts before being introduced to any complex peripherals such as timers, UARTs, ADCs, and all the other powerful function blocks found on a modern microcontroller.  Since these peripherals are commonly used with interrupts, any introduction to them that does not...


Introduction to Microcontrollers - Hello World

Mike Silva September 11, 201316 comments

Embedded Hello World

A standard first program on an embedded platform is the blinking LED.  Getting an LED to blink demonstrates that you have your toolchain set up correctly, that you are able to download your program code into the μC, and that the μC and associated circuitry (e.g. the power supply) is all working.  It can even give you good evidence as to the clock rate that your microcontroller is running (something that trips up a great many people,...


Introduction to Microcontrollers - Timers

Mike Silva September 27, 20132 comments

Timers - Because "When" Matters

Computer programs are odd things, for one reason because they have no concept of time.  They may have the concept of sequential execution, but the time between instructions can be essentially any number and the program won't notice or care (unless assumptions about time have been built into the program by the programmer).  But the real world is not like this.  In the real world, especially the real embedded world,...


Introduction to Microcontrollers - Further Beginnings

Mike Silva September 1, 20134 comments
Embedded Programming Basics

This tutorial entry will discuss some further embedded programming basics that you will need to understand before proceeding on to the LED blinky and other example programs. We will do this by looking at the general organization and types of instructions found in most microcontrollers, and how that organization and those instructions are reflected (or, in some cases, ignored) by the C programming language.

Basic CPU...

Arduino robotics #1 - motor control

Lonnie Honeycutt October 13, 20133 comments
Arduino Robotics

Beginner robotics is a series of article chronicling my first autonomous robot build, Clusterbot.  This build is meant to be affordable, relatively easy and instructive.  The total cost of the build is around $50.  

1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4. 

Introduction to Microcontrollers - Buttons and Bouncing

Mike Silva October 26, 20135 comments

What Is A Button?

To your hardware, that is.  As discussed in Introduction to Microcontrollers - More On GPIO, a button (or key, or switch, or any form of mechanical contact) is generally hooked up to a microcontroller so as to generate a certain logic level when pushed or closed or "active," and the opposite logic level when unpushed or open or "inactive."  The active logic level can be either '0' or '1', but for reasons both historical and electrical, an...


Introduction to Microcontrollers - More On GPIO

Mike Silva September 13, 20134 comments

Now that we have our LED Blinky program nailed down, it's time to look more closely at outputs, add button/switch inputs, and work with reading inputs and driving outputs based on those inputs.

It's ON - No, It's OFF - No, It's ON...

I have to confess, I cheated.  Well, let's say I glossed over something very important.  In our LED Blinky program, we never cared about whether an output '1' or an output '0' turned on the LED.  Since we were just...


The 2024 Embedded Online Conference