
Fluxions for Fun and Profit: Euler, Trapezoidal, Verlet, or Runge-Kutta?
Today we're going to take another diversion from embedded systems, and into the world of differential equations, modeling, and computer simulation.
DON'T PANIC!First of all, just pretend I didn't bring up anything complicated. We're exposed to the effects of differential equations every day, whether we realize it or not. Your car speedometer and odometer are related by a differential equation, and whether you like math or not, you probably have some comprehension of what's going on: you...
Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World
When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...
Lost Secrets of the H-Bridge, Part III: Practical Issues of Inductor and Capacitor Ripple Current
We've been analyzing the ripple current in an H-bridge, both in an inductive load and the DC link capacitor. Here's a really quick recap; if you want to get into more details, go back and read part I and part II until you've got equations coming out of your ears. I promise there will be a lot less grungy math in this post. So let's get most of it out of the way:
Switches QAH and QAL are being turned on and off with pulse-width modulation (PWM), to produce an average voltage DaVdc on...
Lost Secrets of the H-Bridge, Part II: Ripple Current in the DC Link Capacitor
In my last post, I talked about ripple current in inductive loads.
One of the assumptions we made was that the DC link was, in fact, a DC voltage source. In reality that's an approximation; no DC voltage source is perfect, and current flow will alter the DC link voltage. To analyze this, we need to go back and look at how much current actually is being drawn from the DC link. Below is an example. This is the same kind of graph as last time, except we added two...
Lost Secrets of the H-Bridge, Part I: Ripple Current in Inductive Loads
So you think you know about H-bridges? They're something I mentioned in my last post about signal processing with Python.
Here we have a typical H-bridge with an inductive load. (Mmmmm ahhh! It's good to draw by hand every once in a while!) There are four power switches: QAH and QAL connecting node A to the DC link, and QBH and QBL connecting node B to the DC link. The load is connected between nodes A and B, and here is represented by an inductive load in series with something else. We...
Adventures in Signal Processing with Python
Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being a good neighbor to The MathWorks. While I don’t make it a secret of my dislike of many aspects of MATLAB — which I mention later in this article — I do hope they can improve their software and reduce the price. Please note this...
Implementation Complexity, Part II: Catastrophe, Dear Liza, and the M Word
In my last post, I talked about the Tower of Babel as a warning against implementation complexity, and I mentioned a number of issues that can occur at the time of design or construction of a project.
The Tower of Babel, Pieter Bruegel the Elder, c. 1563 (from Wikipedia)
Success and throwing it over the wallOK, so let's say that the right people get together into a well-functioning team, and build our Tower of Babel, whether it's the Empire State Building, or the electrical grid, or...
Implementation Complexity, Part I: The Tower of Babel, Gremlins, and The Mythical Man-Month
I thought I'd post a follow-up, in a sense, to an older post about complexity in consumer electronics I wrote a year and a half ago. That was kind of a rant against overly complex user interfaces. I am a huge opponent of unnecessary complexity in almost any kind of interface, whether a user interface or a programming interface or an electrical interface. Interfaces should be clean and simple.
Now, instead of interface complexity, I'll be talking about implementation complexity, with a...
Isolated Sigma-Delta Modulators, Rah Rah Rah!
I recently faced a little "asterisk" problem, which looks like it can be solved with some interesting ICs.
I needed to plan out some test instrumentation to capture voltage and current information over a short period of time. Nothing too fancy, 10 or 20kHz sampling rate, about a half-dozen channels sampled simultaneously or near simultaneously, for maybe 5 or 10 seconds.
Here's the "asterisk": Oh, by the way, because the system in question was tied to the AC mains, I needed some...
Oscilloscope review: Hameg HMO2024
Last year I wrote about some of the key characteristics of oscilloscopes that are important to me for working with embedded microcontrollers. In that blog entry I rated the Agilent MSOX3024A 4-channel 16-digital-input oscilloscope highly.
Since then I have moved to a different career, and I am again on the lookout for an oscilloscope. I still consider the Agilent MSOX3024A the best choice for a...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 1)
So by now I’m sure you’ve heard about the semiconductor shortage of 2021. For a few complicated reasons, demand is greater than supply, and not everybody who wants to buy integrated circuits can do so. Today we’re going to try to answer some hard questions:
- Why are we in the middle of a semiconductor shortage?
- Why is it taking so long to get my [insert part number here]?
- Did this shortage suddenly sneak up on everybody? If not, what were the signs, and why...
Modulation Alternatives for the Software Engineer
Before I get to talking about modulation, here's a brief diversion.
A long time ago -- 1993, to be precise -- I took my first course on digital electronics and processors. In that class, we had to buy a copy of the TTL Data Book* from Texas Instruments.
If you have any experience in digital logic design you probably know that TTL stands for Transistor-transistor logic (thereby making the phrase "TTL Logic" an example of RAS...
10 Software Tools You Should Know
Unless you're designing small analog electronic circuits, it's pretty hard these days to get things done in embedded systems design without the help of computers. I thought I'd share a list of software tools that help me get my job done. Most of these are free or inexpensive. Most of them are also for working with software. If you never have to design, read, or edit any software, then you're one of a few people that won't benefit from reading this.
Disclaimer: the "best" software...
In Memoriam: Frederick P. Brooks, Jr. and The Mythical Man-Month
It is with some sadness that I have read that Fred Brooks has passed away. Brooks (1931 - 2022) worked at IBM and managed a large team developing the IBM System/360 computers in the early 1960s. Brooks was thirty years old at the start of this project. He founded the Computer Science Department at UNC Chapel Hill in 1964, at the age of thirty-three, acting as its department chair for twenty years. He remained at IBM until 1965, however. During this one-year...
Painting with Light to Measure Time
Recently I was faced with a dilemma while working from home. I needed to verify an implementation of first-order sigma-delta modulation used to adjust LED brightness. (I have described this in more detail in Modulation Alternatives for the Software Engineer.) I did not, however, have an oscilloscope.
And then I remembered something, about a technique called “light painting”: basically a long-exposure photograph where a...
Hot Fun in the Silicon: Thermal Testing with Power Semiconductors
Here's a trick that is useful the next time you do thermal testing with your MOSFETs or IGBTs.
Thermal testing?!
Yes, that's right. It's important to make sure your power transistors don't overheat. In the datasheet, you will find some information that you can use to estimate how hot the junction inside the IC will get.
Let's look at an example. Here's a page from the IRF7739 DirectFET datasheet. I like this datasheet because it has almost all the thermal stuff on one page,...
Reading and Understanding Profitability Metrics from Financial Statements
Whoa! That has got to be the most serious-minded title I’ve ever written. Profitability Metrics from Financial Statements, indeed. I’m still writing Part 2 of my Supply Chain Games article, and I was about to mention something about whether a company is profitable, when I realized something that didn’t quite fit into the flow of things, so I thought I’d handle it separately: how are you supposed to know what I mean, when I say a company is profitable? And how am I...
Implementation Complexity, Part II: Catastrophe, Dear Liza, and the M Word
In my last post, I talked about the Tower of Babel as a warning against implementation complexity, and I mentioned a number of issues that can occur at the time of design or construction of a project.
The Tower of Babel, Pieter Bruegel the Elder, c. 1563 (from Wikipedia)
Success and throwing it over the wallOK, so let's say that the right people get together into a well-functioning team, and build our Tower of Babel, whether it's the Empire State Building, or the electrical grid, or...
Jaywalking Around the Compiler
Our team had another code review recently. I looked at one of the files, and bolted upright in horror when I saw a function that looked sort of like this:
void some_function(SOMEDATA_T *psomedata) { asm volatile("push CORCON"); CORCON = 0x00E2; do_some_other_stuff(psomedata); asm volatile("pop CORCON"); }There is a serious bug here — do you see what it is?
Racing to Sleep
Today we’re going to talk about low-power design.
Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and a LoRa transceiver. The idea is something like...
Linear Feedback Shift Registers for the Uninitiated, Part IV: Easy Discrete Logarithms and the Silver-Pohlig-Hellman Algorithm
Last time we talked about the multiplicative inverse in finite fields, which is rather boring and mundane, and has an easy solution with Blankinship’s algorithm.
Discrete logarithms, on the other hand, are much more interesting, and this article covers only the tip of the iceberg.
What is a Discrete Logarithm, Anyway?Regular logarithms are something that you’re probably familiar with: let’s say you have some number \( y = b^x \) and you know \( y \) and \( b \) but...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 1)
So by now I’m sure you’ve heard about the semiconductor shortage of 2021. For a few complicated reasons, demand is greater than supply, and not everybody who wants to buy integrated circuits can do so. Today we’re going to try to answer some hard questions:
- Why are we in the middle of a semiconductor shortage?
- Why is it taking so long to get my [insert part number here]?
- Did this shortage suddenly sneak up on everybody? If not, what were the signs, and why...
Racing to Sleep
Today we’re going to talk about low-power design.
Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and a LoRa transceiver. The idea is something like...
Implementation Complexity, Part II: Catastrophe, Dear Liza, and the M Word
In my last post, I talked about the Tower of Babel as a warning against implementation complexity, and I mentioned a number of issues that can occur at the time of design or construction of a project.
The Tower of Babel, Pieter Bruegel the Elder, c. 1563 (from Wikipedia)
Success and throwing it over the wallOK, so let's say that the right people get together into a well-functioning team, and build our Tower of Babel, whether it's the Empire State Building, or the electrical grid, or...
Hot Fun in the Silicon: Thermal Testing with Power Semiconductors
Here's a trick that is useful the next time you do thermal testing with your MOSFETs or IGBTs.
Thermal testing?!
Yes, that's right. It's important to make sure your power transistors don't overheat. In the datasheet, you will find some information that you can use to estimate how hot the junction inside the IC will get.
Let's look at an example. Here's a page from the IRF7739 DirectFET datasheet. I like this datasheet because it has almost all the thermal stuff on one page,...
Efficiency Through the Looking-Glass
If you've ever designed or purchased a power supply, chances are you have had to work with efficiency calculations. I can remember in my beginning electronic circuits course in college, in the last lecture when the professor was talking about switching power converters, and saying how all of a sudden you could take a linear regulator that was 40% efficient and turn it into a switching regulator that was 80% efficient. I think that was the nail in the coffin for any plans I had to pursue a...
Linear Feedback Shift Registers for the Uninitiated, Part X: Counters and Encoders
Last time we looked at LFSR output decimation and the computation of trace parity.
Today we are starting to look in detail at some applications of LFSRs, namely counters and encoders.
CountersI mentioned counters briefly in the article on easy discrete logarithms. The idea here is that the propagation delay in an LFSR is smaller than in a counter, since the logic to compute the next LFSR state is simpler than in an ordinary counter. All you need to construct an LFSR is
Oh Robot My Robot
Oh Robot! My Robot! You’ve broken off your nose! Your head is spinning round and round, your eye no longer glows, Each program after program tapped your golden memory, You used to have 12K, now there is none that I can see, Under smoldering antennae, Over long forgotten feet, My sister used your last part: The chip she tried to eat.
Oh Robot, My Robot, the remote controls—they call, The call—for...
The Dilemma of Unwritten Requirements
You will probably hear the word “requirements” at least 793 times in your engineering career, mostly in the context of how important it is, in any project, to agree upon clear requirements before committing to (and hastily proceeding towards) a deadline. Some of those times you may actually follow that advice. Other times it’s just talk, like how you should “wear sunscreen when spending time outdoors” and “eat a diet low in saturated fats and...
How to Succeed in Motor Control: Olaus Magnus, Donald Rumsfeld, and YouTube
Almost four years ago, I had this insight — we were doing it wrong! Most of the application notes on motor control were about the core algorithms: various six-step or field-oriented control methods, with Park and Clarke transforms, sensorless estimators, and whatnot. It was kind of like a driving school would be, if they taught you how the accelerator and brake pedal worked, and how the four-stroke Otto cycle works in internal combustion engines, and handed you a written...
