
Cutting Through the Confusion with ARM Cortex-M Interrupt Priorities
The insanely popular ARM Cortex-M processor offers very versatile interrupt priority management, but unfortunately, the multiple priority numbering conventions used in managing the interrupt priorities are often counter-intuitive, inconsistent, and confusing, which can lead to bugs. In this post I attempt to explain the subject and cut through the confusion.
The Inverse Relationship Between Priority Numbers and Urgency of the Interrupts
The most important fact to know is that ARM...
Cortex-M Exception Handling (Part 2)
The first part of this article described the conditions for an exception request to be accepted by a Cortex-M processor, mainly concerning the relationship of its priority with respect to the current execution priority. This part will describe instead what happens after an exception request is accepted and becomes active.
PROCESSOR OPERATION AND PRIVILEGE MODEBefore discussing in detail the sequence of actions that occurs within the processor after an exception request...
Analyzing the Linker Map file with a little help from the ELF and the DWARF
When you're writing firmware, there always comes a time when you need to check the resources consumed by your efforts - perhaps because you're running out of RAM or Flash or you want to optimize something. The map file generated by your linker is a useful tool to aid in the resource analysis. I wanted to filter and sort the data generated in an interactive way so I wrote a C# WinForms application that reads the data from the map and presents it in a list view (using the awesome
Cortex-M Exception Handling (Part 1)
This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems.
Coding Step 4 - Design
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
The last article in this series discussed how to write functional high-level requirements: specifications for what your software is supposed to do. Software design is the other side of the coin....
The three laws of safe embedded systems
This short article is part of an ongoing series in which I aim to explore some techniques that may be useful for developers and organisations that are beginning their first safety-related embedded project.
Developing software for a safety-related embedded system for the first time
I spend most of my working life with organisations that develop software for high-reliability, real-time embedded systems. Some of these systems are created in compliance with IEC 61508, ISO 26262, DO-178C or similar international standards.
When working with organisations that are developing software for their first safety-related design, I’m often asked to identify the key issues that distinguish this process from the techniques used to develop “ordinary” embedded software.
...“Smarter” cars, unintended acceleration – and unintended consequences
In this article, I consider some recent press reports relating to embedded software in the automotive sector.
In The Times newspaper (London, 2015-10-16) the imminent arrival of Tesla cars that “use autopilot technology to park themselves and change lane without intervention from the driver” was noted.
By most definitions, the Tesla design incorporates what is sometimes called “Artificial Intelligence” (AI).Others might label it a “Smart” (or at least “Smarter”)...
Coding Step 3 - High-Level Requirements
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2- Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
If this series of articles has been light on one thing it's 'coding'. If it's been light on two things the second is 'embedded'. In three articles I haven't gotten past Hello World on a desktop PC. That changes (slowly) with this article. In this article I'll...
Lessons Learned from Embedded Code Reviews (Including Some Surprises)
My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.
My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “
Hello Android
Finally I could get Android Early SDK up and running on my Fedora Core-7 Machine.
The process was quite simple. However I had to struggle for a few days, because Fedora install the gnu version of Java and Android requires Java from Sun.
Here are the steps I had to follow:
(1) Install the eclipse IDE (if you do not have it already) with following command:
$> yum install eclipse-jdt eclipse-jdt-sdk (to be done as super user).
(2) now install the Android SDK and ADT plug-in for Eclipse...
There are 10 kinds of people in the world
It is useful, in embedded software, to be able to specify values in binary. The C language lacks this facility. In this blog we look at how to fix that.
Stand-by or boot-up
Many factors affect the usability of devices - a key one is how long it takes to start up.
How to make a heap profiler
We'll see how to make a heap profiler. Example code for this post makes up heapprof, a working 250-line heap profiler for programs using malloc/free.
It works out of the box on Linux (tested on "real" programs like gdb and python). The main point though is being easy to port and modify to suit your needs. The code, build and test scripts are at github.
Why roll your own heap profiler?
- It's easy! And fun, if you're that sort of person. What, not reasons enough? OK, how...
Android for Embedded Devices - 5 Reasons why Android is used in Embedded Devices
The embedded purists are going to hate me for this. How can you even think of using Android on an embedded system ? It’s after all a mobile phone operating system/software.
Sigh !! Yes I did not like Android to begin with, as well - for use on an Embedded System. But sometimes I think the market and needs decide what has to be used and what should not be. This is one such thing. Over the past few years, I have learned to love Android as an embedded operating system....
Embedded Programming Video Course Shows How OOP Works Under the Hood
If you'd like to understand how Object-Oriented Programming (OOP) really works under the hood, here is a free video course for you:
OOP part-1: Encapsulation: This first lesson on Object-Oriented Programming (OOP) introduces the concept of Encapsulation, which is the ability to package data and functions together into classes. You'll see how you can emulate Encapsulation in C, what kind of code is generated, and how to debug such code. Next, you will translate the C design into C++ using...
3 Overlooked Embedded Software Elements
Have you ever wondered, while you and your team are busy writing software if the foundation of how embedded software systems are built has changed and left you in the dust? What if while you were busily focusing on getting your product out the door, fighting bugs, and dealing with supply issues, there were techniques and processes that you completely overlooked that could save the day? I’ve found three elements embedded software teams often underutilize that could dramatically improve...
C++ on microcontrollers 4 – input pins, and decoding a rotary switch
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
So far I...
Dumb Embedded System Mistakes: Running The Wrong Code
ContentsReview: Prototype to Product
Prototype to Product: A Practical Guide for Getting to Market, by Alan Cohen, is a must-read for anyone involved in product development, whether in a technical, management, or executive role.
I was reminded of it by Cohen's recent episode on Embedded.fm, 388: Brains Generate EMF, which is worth listening to a couple times through, especially if you're interested in medical device development. And in fact his first episode there,
VolksEEG: Rust Development On Adafruit nRF52840 Feather Express
Contents:3 Overlooked Embedded Software Elements
Have you ever wondered, while you and your team are busy writing software if the foundation of how embedded software systems are built has changed and left you in the dust? What if while you were busily focusing on getting your product out the door, fighting bugs, and dealing with supply issues, there were techniques and processes that you completely overlooked that could save the day? I’ve found three elements embedded software teams often underutilize that could dramatically improve...
STM32 VS Code Extension Under The Hood
VS Code is becoming the "go to" environment for many developers. Increasingly, toolchain providers are publishing VS Code extensions and ST has recently followed suit. Additionally, CMake is significantly growing in popularity, with many projects adopting it for its ease of use and flexibility. This video shows how the STM32 VS Code extension works under the hood and how to get more out of it.
Specifically, we'll review the CMake files generated by the VS Code extension and how to modify...
Video-Based STEM Embedded Systems Curriculum, Part 1
Contents:- Introduction
- Adapting To Your Circumstances
- Suggested Policies
- The Video Educators
- Equipment, Books, and Supplies
- Lesson Summary
- Suggested Teaching Method
AI at the Edge - Can I run a neural network in a resource-constrained device?
Hello Related Communities,
This is my first time blogging since joining Stephane in November. He and I were at Embedded World together and he asked me to write about some of the important trends as they relate to all of you. I expect to post others in the near future, but the biggest trend in the embedded space was all of the activity around artificial intelligence (AI) at the edge.
This trend caught me a bit by surprise. I have been doing a lot of reading about AI over the last...
Short Circuit Execution vs. Unit Testing
The key to effective communication is to say what you mean and avoid ambiguity. Words and phrases with multiple meanings can confuse your audience and hinder communication. That’s why so many programmers prefer writing code to writing specifications: written human language introduces ambiguity and subsequently, confusion. Code only has one interpretation, period. This doesn’t, however, ensure that the right message is getting through. Code can, indeed, only do one thing,...
Scorchers, Part 2: Unknown Bugs and Popcorn
This is a short article about diminishing returns in the context of software releases.
Those of you who have been working professionally on software or firmware have probably faced this dilemma before. The scrum masters of the world will probably harp on terms like the Definition of Done and the Minimum Viable Product. Blah blah blah. In simple terms, how do you know when your product is ready to release? This is both an easy and a difficult question to answer.
What makes...
Understanding Yocto Project Layers: A Modular Approach to Embedded Systems Development
In the world of embedded systems, flexibility and modularity are key to managing complex projects efficiently. The Yocto Project, a powerful build system for creating custom Linux distributions, embraces this philosophy through the use of layers. These layers are essentially sets of repositories that contain the instructions and metadata required to build a specific target image. By leveraging layers, developers can modularize their projects, reusing and sharing previously developed metadata...
Embedded Toolbox: Source Code Whitespace Cleanup
In this installment of my "Embedded Toolbox" series, I would like to share with you the free source code cleanup utility called QClean for cleaning whitespace in your source files, header files, makefiles, linker scripts, etc.
You probably wonder why you might need such a utility? In fact, the common thinking is that compilers (C, C++, etc.) ignore whitespace anyway, so why bother? But, as a professional software developer you should not ignore whitespace, because it can cause all sorts...
The three laws of safe embedded systems
This short article is part of an ongoing series in which I aim to explore some techniques that may be useful for developers and organisations that are beginning their first safety-related embedded project.
