## Scorchers, Part 3: Bare-Metal Concurrency With Double-Buffering and the Revolving Fireplace

This is a short article about one technique for communicating between asynchronous processes on bare-metal embedded systems.

Q: Why did the multithreaded chicken cross the road?

A: to To other side. get the

There are many reasons why concurrency is

## Tolerance Analysis

Today we’re going to talk about tolerance analysis. This is a topic that I have danced around in several previous articles, but never really touched upon in its own right. The closest I’ve come is Margin Call, where I discussed several different techniques of determining design margin, and ran through some calculations to justify that it was safe to allow a certain amount of current through an IRFP260N MOSFET.

Tolerance analysis...

## Scorchers, Part 2: Unknown Bugs and Popcorn

This is a short article about diminishing returns in the context of software releases.

Those of you who have been working professionally on software or firmware have probably faced this dilemma before. The scrum masters of the world will probably harp on terms like the Definition of Done and the Minimum Viable Product. Blah blah blah. In simple terms, how do you know when your product is ready to release? This is both an easy and a difficult question to answer.

What makes...

## Racing to Sleep

Today we’re going to talk about low-power design.

Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and a LoRa transceiver. The idea is something like...

## Jaywalking Around the Compiler

Our team had another code review recently. I looked at one of the files, and bolted upright in horror when I saw a function that looked sort of like this:

void some_function(SOMEDATA_T *psomedata) { asm volatile("push CORCON"); CORCON = 0x00E2; do_some_other_stuff(psomedata); asm volatile("pop CORCON"); }There is a serious bug here — do you see what it is?

## Shibboleths: The Perils of Voiceless Sibilant Fricatives, Idiot Lights, and Other Binary-Outcome Tests

AS-SALT, JORDAN — Dr. Reza Al-Faisal once had a job offer from Google to work on cutting-edge voice recognition projects. He turned it down. The 37-year-old Stanford-trained professor of engineering at Al-Balqa’ Applied University now leads a small cadre of graduate students in a government-sponsored program to keep Jordanian society secure from what has now become an overwhelming influx of refugees from the Palestinian-controlled West Bank. “Sometimes they visit relatives...

## Wye Delta Tee Pi: Observations on Three-Terminal Networks

Today I’m going to talk a little bit about three-terminal linear passive networks. These generally come in two flavors, wye and delta.

Why Wye?The town of Why, Arizona has a strange name that comes from the shape of the original road junction of Arizona State Highways 85 and 86, which was shaped like the letter Y. This is no longer the case, because the state highway department reconfigured the intersection

## The Least Interesting Circuit in the World

It does nothing, most of the time.

It cannot compute pi. It won’t oscillate. It doesn’t light up.

Often it makes other circuits stop working.

It is… the least interesting circuit in the world.

What is it?

About 25 years ago, I took a digital computer architecture course, and we were each given use of an ugly briefcase containing a bunch of solderless breadboards and a power supply and switches and LEDs — and a bunch of

## Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation

Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...

## R1C1R2C2: The Two-Pole Passive RC Filter

I keep running into this circuit every year or two, and need to do the same old calculations, which are kind of tiring. So I figured I’d just write up an article and then I can look it up the next time.

This is a two-pole passive RC filter. Doesn’t work as well as an LC filter or an active filter, but it is cheap. We’re going to find out a couple of things about its transfer function.

First let’s find out the transfer function of this circuit:

Not very...

## Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 3)

Hello again! Today we’re going to take a closer look at Moore’s Law, semiconductor foundries, and semiconductor economics — and a game that explores the effect of changing economics on the supply chain.

We’ll try to answer some of these questions:

- What does Moore’s Law really mean, and how does it impact the economics of semiconductor manufacturing?
- How does the foundry business model work, and how is it affected by the different mix of technology...

## Important Programming Concepts (Even on Embedded Systems) Part I: Idempotence

There are literally hundreds, if not thousands, of subtle concepts that contribute to high quality software design. Many of them are well-known, and can be found in books or the Internet. I’m going to highlight a few of the ones I think are important and often overlooked.

But first let’s start with a short diversion. I’m going to make a bold statement: unless you’re a novice, there’s at least one thing in computer programming about which you’ve picked up...

## Ten Little Algorithms, Part 3: Welford's Method (and Friends)

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Last time we talked about a low-pass filter, and we saw that a one-line...

## How to Estimate Encoder Velocity Without Making Stupid Mistakes: Part II (Tracking Loops and PLLs)

Yeeehah! Finally we're ready to tackle some more clever ways to figure out the velocity of a position encoder. In part I, we looked at the basics of velocity estimation. Then in my last article, I talked a little about what's necessary to evaluate different kinds of algorithms. Now it's time to start describing them. We'll cover tracking loops and phase-locked loops in this article, and Luenberger observers in part III.

But first we need a moderately simple, but interesting, example...

## Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams

Today we're going to talk about data framing and something called COBS, which will make your life easier the next time you use serial communications on an embedded system -- but first, here's a quiz:

Quick Diversion, Part I: Which of the following is the toughest area of electrical engineering? analog circuit design digital circuit design power electronics communications radiofrequency (RF) circuit design electromagnetic...## How to Build a Fixed-Point PI Controller That Just Works: Part I

This two-part article explains five tips to make a fixed-point PI controller work well. I am not going to talk about loop tuning -- there are hundreds of articles and books about that; any control-systems course will go over loop tuning enough to help you understand the fundamentals. There will always be some differences for each system you have to control, but the goals are the same: drive the average error to zero, keep the system stable, and maximize performance (keep overshoot and delay...

## Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough

Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this series for a while. Fourth installments after a hiatus can bring bad vibes. I mean, look what it did to George Lucas: now we have Star Wars Episode I: The Phantom Menace and

## Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...

## Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 2)

Welcome back! Today we’re going to zoom around again in some odd directions, and give a roundabout introduction to the semiconductor industry, touching on some of the following questions:

- How do semiconductors get designed and manufactured?
- What is the business of semiconductor manufacturing like?
- What are the different types of semiconductors, and how does that affect the business model of these manufacturers?
- How has the semiconductor industry evolved over...

## Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction

Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.

This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...

## 10 Software Tools You Should Know

Unless you're designing small analog electronic circuits, it's pretty hard these days to get things done in embedded systems design without the help of computers. I thought I'd share a list of software tools that help me get my job done. Most of these are free or inexpensive. Most of them are also for working with software. If you never have to design, read, or edit any software, then you're one of a few people that won't benefit from reading this.

Disclaimer: the "best" software...

## Analog-to-Digital Confusion: Pitfalls of Driving an ADC

Imagine the following scenario:You're a successful engineer (sounds nice, doesn't it!) working on a project with three or four circuit boards. More than even you can handle, so you give one of them over to your coworker Wayne to design. Wayne graduated two years ago from college. He's smart, he's a quick learner, and he's really fast at designing schematics and laying out circuit boards. It's just that sometimes he takes some shortcuts... but in this case the circuit board is just something...

## Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams

Today we're going to talk about data framing and something called COBS, which will make your life easier the next time you use serial communications on an embedded system -- but first, here's a quiz:

Quick Diversion, Part I: Which of the following is the toughest area of electrical engineering? analog circuit design digital circuit design power electronics communications radiofrequency (RF) circuit design electromagnetic...## Important Programming Concepts (Even on Embedded Systems) Part V: State Machines

Other articles in this series:

- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part VI: Abstraction

Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.

Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...

## Byte and Switch (Part 1)

Imagine for a minute you have an electromagnet, and a microcontroller, and you want to use the microcontroller to turn the electromagnet on and off. Sounds pretty typical, right?We ask this question on our interviews of entry-level electrical engineers: what do you put between the microcontroller and the electromagnet?We used to think this kind of question was too easy, but there are a surprising number of subtleties here (and maybe a surprising number of job candidates that were missing...

## 10 Circuit Components You Should Know

Chefs have their miscellaneous ingredients, like condensed milk, cream of tartar, and xanthan gum. As engineers, we too have quite our pick of circuits, and a good circuit designer should know what's out there. Not just the bread and butter ingredients like resistors, capacitors, op-amps, and comparators, but the miscellaneous "gadget" components as well.

Here are ten circuit components you may not have heard of, but which are occasionally quite useful.

1. Multifunction gate (

## How to Build a Fixed-Point PI Controller That Just Works: Part I

This two-part article explains five tips to make a fixed-point PI controller work well. I am not going to talk about loop tuning -- there are hundreds of articles and books about that; any control-systems course will go over loop tuning enough to help you understand the fundamentals. There will always be some differences for each system you have to control, but the goals are the same: drive the average error to zero, keep the system stable, and maximize performance (keep overshoot and delay...

## Ten Little Algorithms, Part 1: Russian Peasant Multiplication

This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.

Other articles in this series:

- Part 1:

## Ten Little Algorithms, Part 3: Welford's Method (and Friends)

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Last time we talked about a low-pass filter, and we saw that a one-line...

## How to Estimate Encoder Velocity Without Making Stupid Mistakes: Part II (Tracking Loops and PLLs)

Yeeehah! Finally we're ready to tackle some more clever ways to figure out the velocity of a position encoder. In part I, we looked at the basics of velocity estimation. Then in my last article, I talked a little about what's necessary to evaluate different kinds of algorithms. Now it's time to start describing them. We'll cover tracking loops and phase-locked loops in this article, and Luenberger observers in part III.

But first we need a moderately simple, but interesting, example...