Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
Ten Little Algorithms, Part 3: Welford's Method (and Friends)
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Last time we talked about a low-pass filter, and we saw that a one-line...
Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...
Ten Little Algorithms, Part 1: Russian Peasant Multiplication
This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.
Other articles in this series:
- Part 1:
One Clock Cycle Polynomial Math
Error correction codes and cryptographic computations are most easily performed working with $GF(2^n)$ polynomials. By using very special values of $n$ we can build circuits which multiply and square in one clock cycle on an FPGA. These circuits come about by flipping back and forth between a standard polynomial basis and a normal basis representation of elements in $GF(2^n)$.
A normal basis is yet another form of polynomial but instead of adding powers of $\beta$ we add...
Elliptic Curve Key Exchange
Elliptic Curve Cryptography is used to create a Public Key system that allows two people (or computers) to exchange public data so that both sides know a secret that no one else can find in a reasonable time. The simplest method uses a fixed public key for each person. Once cracked, every message ever sent with that key is open. More advanced key exchange systems have "perfect forward secrecy" which means that even if one message key is cracked, no other message will...
Elliptic Curve Digital Signatures
A digital signature is used to prove a message is connected to a specific sender. The sender can not deny they sent that message once signed, and no one can modify the message and maintain the signature. The message itself is not necessarily secret. Certificates of authenticity, digital cash, and software distribution use digital signatures so recipients can verify they are getting what they paid for.
Since messages can be of any length and mathematical algorithms always use fixed...
Polynomial Inverse
One of the important steps of computing point addition over elliptic curves is a division of two polynomials. When working in $GF(2^n)$ we don't have large enough powers to actually do a division, so we compute the inverse of the denominator and then multiply. This is usually done using Euclid's method, but if squaring and multiplying are fast we can take advantage of these operations and compute the multiplicative inverse in just a few steps.
The first time I ran across this...
Polynomial Inverse
One of the important steps of computing point addition over elliptic curves is a division of two polynomials. When working in $GF(2^n)$ we don't have large enough powers to actually do a division, so we compute the inverse of the denominator and then multiply. This is usually done using Euclid's method, but if squaring and multiplying are fast we can take advantage of these operations and compute the multiplicative inverse in just a few steps.
The first time I ran across this...
Linear Feedback Shift Registers for the Uninitiated, Part IX: Decimation, Trace Parity, and Cyclotomic Cosets
Last time we looked at matrix methods and how they can be used to analyze two important aspects of LFSRs:
- time shifts
- state recovery from LFSR output
In both cases we were able to use a finite field or bitwise approach to arrive at the same result as a matrix-based approach. The matrix approach is more expensive in terms of execution time and memory storage, but in some cases is conceptually simpler.
This article will be covering some concepts that are useful for studying the...
Elliptic Curve Digital Signatures
A digital signature is used to prove a message is connected to a specific sender. The sender can not deny they sent that message once signed, and no one can modify the message and maintain the signature. The message itself is not necessarily secret. Certificates of authenticity, digital cash, and software distribution use digital signatures so recipients can verify they are getting what they paid for.
Since messages can be of any length and mathematical algorithms always use fixed...
Polynomial Math
Elliptic Curve Cryptography is used as a public key infrastructure to secure credit cards, phones and communications links. All these devices use either FPGA's or embedded microprocessors to compute the algorithms that make the mathematics work. While the math is not hard, it can be confusing the first time you see it. This blog is an introduction to the operations of squaring and computing an inverse over a finite field which are used in computing Elliptic Curve arithmetic. ...