Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation
Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...
Linear Feedback Shift Registers for the Uninitiated, Part XVII: Reverse-Engineering the CRC
Last time, we continued a discussion about error detection and correction by covering Reed-Solomon encoding. I was going to move on to another topic, but then there was this post on Reddit asking how to determine unknown CRC parameters:
I am seeking to reverse engineer an 8-bit CRC. I don’t know the generator code that’s used, but can lay my hands on any number of output sequences given an input sequence.
This is something I call the “unknown oracle”...
A Wish for Things That Work
As the end of the year approaches, I become introspective. This year I am frustrated by bad user interfaces in software.
Actually, every year, throughout the year, I am frustrated by bad user interfaces in software. And yet here it is, the end of 2017, and things aren’t getting much better! Argh!
I wrote about this sort of thing a bit back in 2011 (“Complexity in Consumer Electronics Considered Harmful”) but I think it’s time to revisit the topic. So I’m...
Linear Feedback Shift Registers for the Uninitiated, Part XI: Pseudorandom Number Generation
Last time we looked at the use of LFSRs in counters and position encoders.
This time we’re going to look at pseudorandom number generation, and why you may — or may not — want to use LFSRs for this purpose.
But first — an aside:
Science Fair 1983When I was in fourth grade, my father bought a Timex/Sinclair 1000. This was one of several personal computers introduced in 1982, along with the Commodore 64. The...
Linear Feedback Shift Registers for the Uninitiated, Part X: Counters and Encoders
Last time we looked at LFSR output decimation and the computation of trace parity.
Today we are starting to look in detail at some applications of LFSRs, namely counters and encoders.
CountersI mentioned counters briefly in the article on easy discrete logarithms. The idea here is that the propagation delay in an LFSR is smaller than in a counter, since the logic to compute the next LFSR state is simpler than in an ordinary counter. All you need to construct an LFSR is
Linear Feedback Shift Registers for the Uninitiated, Part IX: Decimation, Trace Parity, and Cyclotomic Cosets
Last time we looked at matrix methods and how they can be used to analyze two important aspects of LFSRs:
- time shifts
- state recovery from LFSR output
In both cases we were able to use a finite field or bitwise approach to arrive at the same result as a matrix-based approach. The matrix approach is more expensive in terms of execution time and memory storage, but in some cases is conceptually simpler.
This article will be covering some concepts that are useful for studying the...
Linear Feedback Shift Registers for the Uninitiated, Part VIII: Matrix Methods and State Recovery
Last time we looked at a dsPIC implementation of LFSR updates. Now we’re going to go back to basics and look at some matrix methods, which is the third approach to represent LFSRs that I mentioned in Part I. And we’re going to explore the problem of converting from LFSR output to LFSR state.
Matrices: Beloved Historical DregsElwyn Berlekamp’s 1966 paper Non-Binary BCH Encoding covers some work on
Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer
The last four articles were on algorithms used to compute with finite fields and shift registers:
- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output
Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.
Lazy Properties in Python Using Descriptors
This is a bit of a side tangent from my normal at-least-vaguely-embedded-related articles, but I wanted to share a moment of enlightenment I had recently about descriptors in Python. The easiest way to explain a descriptor is a way to outsource attribute lookup and modification.
Python has a bunch of “magic” methods that are hooks into various object-oriented mechanisms that let you do all sorts of ridiculously clever things. Whether or not they’re a good idea is another...
Linear Feedback Shift Registers for the Uninitiated, Part VI: Sing Along with the Berlekamp-Massey Algorithm
The last two articles were on discrete logarithms in finite fields — in practical terms, how to take the state \( S \) of an LFSR and its characteristic polynomial \( p(x) \) and figure out how many shift steps are required to go from the state 000...001 to \( S \). If we consider \( S \) as a polynomial bit vector such that \( S = x^k \bmod p(x) \), then this is equivalent to the task of figuring out \( k \) from \( S \) and \( p(x) \).
This time we’re tackling something...
Linear Feedback Shift Registers for the Uninitiated, Part XI: Pseudorandom Number Generation
Last time we looked at the use of LFSRs in counters and position encoders.
This time we’re going to look at pseudorandom number generation, and why you may — or may not — want to use LFSRs for this purpose.
But first — an aside:
Science Fair 1983When I was in fourth grade, my father bought a Timex/Sinclair 1000. This was one of several personal computers introduced in 1982, along with the Commodore 64. The...
Musings on Publication — and Zero Sequence Modulation
Perhaps you don’t think about it, but in order for you to read these articles, someone has to do something.
And I don’t just mean writing them. Stephane Boucher has set up this website so that it’s automatic, for the most part — at least from my end of things, as an author. When I get an idea for an article, I open up a new IPython Notebook, write my article, save it in a Mercurial repository, run a Python script to convert from IPython Notebook format to HTML, open...
Margin Call: Fermi Problems, Highway Horrors, Black Swans, and Why You Should Worry About When You Should Worry
“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don’t know. But there are also unknown unknowns — there are things we do not know we don’t know.” — Donald Rumsfeld, February 2002
Today’s topic is engineering margin.
XKCD had a what-if column involving Fermi...
Linear Feedback Shift Registers for the Uninitiated, Part X: Counters and Encoders
Last time we looked at LFSR output decimation and the computation of trace parity.
Today we are starting to look in detail at some applications of LFSRs, namely counters and encoders.
CountersI mentioned counters briefly in the article on easy discrete logarithms. The idea here is that the propagation delay in an LFSR is smaller than in a counter, since the logic to compute the next LFSR state is simpler than in an ordinary counter. All you need to construct an LFSR is
Garden Rakes Revisited: The Hall of Shame
A little while ago, I wrote about what I call the “garden rakes” syndrome in software, where there are little bugs or pitfalls lying around like sloppy garden rakes that no one has put away, and when you use these software programs, instead of zooming around getting things done, you’re either tripping over the garden rakes or carefully trying to avoid them. Either way, you lose focus on what you’re really trying to work on, and that causes a big hit in...
Reading and Understanding Profitability Metrics from Financial Statements
Whoa! That has got to be the most serious-minded title I’ve ever written. Profitability Metrics from Financial Statements, indeed. I’m still writing Part 2 of my Supply Chain Games article, and I was about to mention something about whether a company is profitable, when I realized something that didn’t quite fit into the flow of things, so I thought I’d handle it separately: how are you supposed to know what I mean, when I say a company is profitable? And how am I...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 4)
Today we’re going to look at what’s been going on this past year in the chip shortage, particularly in the automotive markets. I’m going to share some recent events and statements that may shed some light on what’s been happening.
In Part Three we went through a deep dive on some aspects of Moore’s Law, the semiconductor foundries, and semiconductor economics, and we looked at the game Supply Chain Idle. We touched on a couple of important points about the...
What I Learned From Crashing and Burning in Grad School
Have you ever felt so consumed by something that it started to crowd other parts of your life? So obsessed with success in a particular area that you could hardly think about anything else? I found myself in exactly that spot in 2018 when I first started graduate school; I wanted to succeed so badly that I worked myself to the bone and I let even my marriage and my health suffer in service to it. This state of being is, believe it or not, NOT conducive to success, in neither the long-term nor the short-term. But it took two authors and one pivotal book for me to understand that, to see the pit I had dug for myself, and to begin the path back out. In this blog, I want to share with you my journey in the hopes that you can avoid the mistakes I made.
Linear Feedback Shift Registers for the Uninitiated, Part IV: Easy Discrete Logarithms and the Silver-Pohlig-Hellman Algorithm
Last time we talked about the multiplicative inverse in finite fields, which is rather boring and mundane, and has an easy solution with Blankinship’s algorithm.
Discrete logarithms, on the other hand, are much more interesting, and this article covers only the tip of the iceberg.
What is a Discrete Logarithm, Anyway?Regular logarithms are something that you’re probably familiar with: let’s say you have some number \( y = b^x \) and you know \( y \) and \( b \) but...
Next time you refer to an Optical Disc
I recently came across this interesting (and lesser known) fact about Optical Discs:
The word disc, in reference to DVD or CD, should be spelled with a c, not a k. The generally accepted rule is that optical discs are spelled with a c, whereas magnetic disks are spelled with a k. For magneto-optical discs, which are a combination of both formats, the word is spelled with c because the discs are read with a laser. The New York Times, after years of head-in-the-sand usage of k for...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 4)
Today we’re going to look at what’s been going on this past year in the chip shortage, particularly in the automotive markets. I’m going to share some recent events and statements that may shed some light on what’s been happening.
In Part Three we went through a deep dive on some aspects of Moore’s Law, the semiconductor foundries, and semiconductor economics, and we looked at the game Supply Chain Idle. We touched on a couple of important points about the...
Linear Feedback Shift Registers for the Uninitiated, Part III: Multiplicative Inverse, and Blankinship's Algorithm
Last time we talked about basic arithmetic operations in the finite field \( GF(2)[x]/p(x) \) — addition, multiplication, raising to a power, shift-left and shift-right — as well as how to determine whether a polynomial \( p(x) \) is primitive. If a polynomial \( p(x) \) is primitive, it can be used to define an LFSR with coefficients that correspond to the 1 terms in \( p(x) \), that has maximal length of \( 2^N-1 \), covering all bit patterns except the all-zero...
Tenderfoot: Embedded Software and Firmware Specialties
Once upon a time (seven years ago) I answered a question on Stack Overflow. Then Stephane suggested I turn that answer into a blog post. Great idea! This post dives deeper into the original question: “Is it possible to fragment this field (embedded software and firmware) into sub-fields?”
This post represents a detailed and updated response to my original Stack Overflow answer. I hope this post provides guidance and useful information to the “tenderfoots” in the...
Linear Feedback Shift Registers for the Uninitiated, Part IV: Easy Discrete Logarithms and the Silver-Pohlig-Hellman Algorithm
Last time we talked about the multiplicative inverse in finite fields, which is rather boring and mundane, and has an easy solution with Blankinship’s algorithm.
Discrete logarithms, on the other hand, are much more interesting, and this article covers only the tip of the iceberg.
What is a Discrete Logarithm, Anyway?Regular logarithms are something that you’re probably familiar with: let’s say you have some number \( y = b^x \) and you know \( y \) and \( b \) but...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 1)
So by now I’m sure you’ve heard about the semiconductor shortage of 2021. For a few complicated reasons, demand is greater than supply, and not everybody who wants to buy integrated circuits can do so. Today we’re going to try to answer some hard questions:
- Why are we in the middle of a semiconductor shortage?
- Why is it taking so long to get my [insert part number here]?
- Did this shortage suddenly sneak up on everybody? If not, what were the signs, and why...
Linear Feedback Shift Registers for the Uninitiated, Part X: Counters and Encoders
Last time we looked at LFSR output decimation and the computation of trace parity.
Today we are starting to look in detail at some applications of LFSRs, namely counters and encoders.
CountersI mentioned counters briefly in the article on easy discrete logarithms. The idea here is that the propagation delay in an LFSR is smaller than in a counter, since the logic to compute the next LFSR state is simpler than in an ordinary counter. All you need to construct an LFSR is
Linear Feedback Shift Registers for the Uninitiated
In 2017 and 2018 I wrote an eighteen-part series of articles about linear feedback shift registers, or LFSRs:
div.jms-article-content ol > li { list-style-type: upper-roman } Ex-Pralite Monks and Finite Fields, in which we describe what an LFSR is as a digital circuit; its cyclic behavior over time; the definition of groups, rings, and fields; the isomorphism between N-bit LFSRs and the field \( GF(2^N) \); and the reason why I wrote this seriesHow to Succeed in Motor Control: Olaus Magnus, Donald Rumsfeld, and YouTube
Almost four years ago, I had this insight — we were doing it wrong! Most of the application notes on motor control were about the core algorithms: various six-step or field-oriented control methods, with Park and Clarke transforms, sensorless estimators, and whatnot. It was kind of like a driving school would be, if they taught you how the accelerator and brake pedal worked, and how the four-stroke Otto cycle works in internal combustion engines, and handed you a written...
Oh Robot My Robot
Oh Robot! My Robot! You’ve broken off your nose! Your head is spinning round and round, your eye no longer glows, Each program after program tapped your golden memory, You used to have 12K, now there is none that I can see, Under smoldering antennae, Over long forgotten feet, My sister used your last part: The chip she tried to eat.
Oh Robot, My Robot, the remote controls—they call, The call—for...
Scorchers, Part 1: Tools and Burn Rate
This is a short article about one aspect of purchasing, for engineers.
I had an engineering manager once — I’ll leave his real name out of it, but let’s call him Barney — who had a catchy response to the question “Can I buy XYZ?”, where XYZ was some piece of test equipment, like an oscilloscope or multimeter. Barney said, “Get what you need, need what you get.” We used purchase orders, which when I started in 1996 were these quaint forms on...











