
Creating a Hardware Abstraction Layer (HAL) in C
In my last post, C to C++: Using Abstract Interfaces to Create Hardware Abstraction Layers (HAL), I discussed how vital hardware abstraction layers are and how to use a C++ abstract interface to create them. You may be thinking, that’s great for C++, but I work in C! How do I create a HAL that can easily swap in and out different drivers? In today’s post, I will walk through exactly how to do that while using the I2C bus as an example.

Elliptic Curve Cryptography - Key Exchange and Signatures
Elliptic curve mathematics over finite fields helps solve the problem of exchanging secret keys for encrypted messages as well as proving a specific person signed a particular document. This article goes over simple algorithms for key exchange and digital signature using elliptic curve mathematics. These methods are the essence of elliptic curve cryptography (ECC) used in applications such as SSH, TLS and HTTPS.

Elliptic Curve Cryptography - Security Considerations
The security of elliptic curve cryptography is determined by the elliptic curve discrete log problem. This article explains what that means. A comparison with real number logarithm and modular arithmetic gives context for why it is called a log problem.

Handling Translations in an Embedded Project
A brief walkthrough on how to handle human language translations in a low level C application. Some options are listed, each with advantages and disadvantages laid out.

Elliptic Curve Cryptography - Basic Math
An introduction to the math of elliptic curves for cryptography. Covers the basic equations of points on an elliptic curve and the concept of point addition as well as multiplication.

What does it mean to be 'Turing complete'?
The term "Turing complete" describes all computers and even some things we don't expect to be as powerful as a typical computer. In this article, I describe what it means and discuss the implications of Turing completeness on projects that need just a little more power, on alternative processor designs, and even security.

Mastering Modern FPGA Skills for Engineers
In the rapidly evolving tech industry, engineers must acquire proficiency in modern FPGA skills. These skills empower engineers to optimize designs, minimize resource usage, and efficiently address FPGA design challenges while ensuring functionality, security, and compliance.

Open-Source Licenses Made Easy with Buildroot and Yocto for Embedded Linux
In this article I will try to explain what are the copyrights/copyleft, what are the popular opensource software licenses, and how to make sure that your Embedded Linux system complies with them using popular build systems ; Buildroot or YOCTO projec

There are 10 kinds of people in the world
It is useful, in embedded software, to be able to specify values in binary. The C language lacks this facility. In this blog we look at how to fix that.

Data Types for Control & DSP
There's a lot of information out there on what data types to use for digital signal processing, but there's also a lot of confusion, so the topic bears repeating.I recently posted an entry on PID control. In that article I glossed over the data...

Adventures in Signal Processing with Python
Author’s note: This article was originally called Adventures in Signal Processing with Python (MATLAB? We don’t need no stinkin' MATLAB!) — the allusion to The Treasure of the Sierra Madre has been removed, in deference to being...

On optimizing manual soldering
When faced with manual soldering of thousands of components, speed and efficiency become pivotal. Here are some takeaways from my own experience attempting to optimize such a process.

Zephyr: West Manifest For Application Development
In this blog post, I show a simpler way to create custom West manifest files. This technique eliminates the need to duplicate the complex West manifest from upstream Zephyr. I also show how we can use the West manifest to include out-of-tree board and SoC definitions, and include our own out-of-tree drivers.

Write Better Code with Block Diagrams and Flowcharts
Reading and writing code without architectural diagrams is like trying to follow complex instructions without any explanatory pictures: nigh impossible! By taking the time to draw out the block diagrams and flowcharts for your code, you can help identify problems before they arise and make your code easier to design, write, test, and debug. In this article, I'll briefly justify the importance of architectural drawings such as block diagrams and flowcharts and then teach you what they are and how to draw them. Using two simple examples, you'll see first-hand how these drawings can significantly amplify your understanding of a piece of code. Additionally, I'll give you a few tips for how to implement each drawing once you've completed it and I'll share with you a few neat tools to help you complete your next set of drawings.