

Parlez vous Fortran?
A look at the variety of programming languages that are [or have been] used for embedded and some thoughts on the future possibilities.

Lost Secrets of the H-Bridge, Part V: Gate Drives for Dummies
Learn the most important issues in power MOSFET and IGBT gate drives: - Transistor behavior during switching - Calculating turn-on and turn-off times - Passive components used between gate drive IC and transistor - Reverse recovery - Capacitively-coupled spurious turn-on - Factors that influence a good choice of turn-on and turn-off times - Gate drive supply voltage management - Bootstrap gate drives - Design issues impacting reliability

When a Mongoose met a MicroPython, part II
In the first part of this blog, we introduced this little framework to integrate MicroPython and Cesanta's Mongoose; where Mongoose runs when called by MicroPython and is able to run Python functions as callbacks for the events you decide in your event handler. Now we add MQTT to the equation, so we can subscribe to topics and publish messages right from MicroPython.

ANCS and HID: Controlling Your iPhone From Zephyr
In this blog post, we see how certain BLE services can be used to control an iPhone from a Nordic nRF52840 using The Zephyr Project. Specifically, we see how to control certain multimedia functionality using the HID service. Finally, we learn how to use the ANCS client library provided by Nordic in The Zephyr Project to accept or decline an incoming call.

You Don't Need an RTOS (Part 3)
In this third article I'll share with you a few cooperative schedulers (with a mix of both free and commercial licenses) that implement a few of the OS primitives that the "Superduperloop" is currently missing, possibly giving you a ready-to-go solution for your system. On the other hand, I don't think it's all that hard to add thread flags, binary and counting semaphores, event flags, mailboxes/queues, a simple Observer pattern, and something I call a "marquee" to the "Superduperloop"; I'll show you how to do that in the second half of this article and the next. Although it will take a little more work than just using one of the projects above, it will give you the maximum amount of control over your system and it will let you write tasks in ways you could only dream of using an RTOS or other off-the-shelf system.

Core competencies
Creating software from scratch is attractive, as the developer has total control. However, this is rarely economic or even possible with complex systems and tight deadlines.

FSM - Let 'em talk
No state machine is an island. State machines do not exist in a vacuum, they need to "talk" to their environment and each other to share information and provide synchronization to perform the system functions. In this conclusive article, you will find what kind of problems and which critical areas you need to pay attention to when designing a concurrent system. Although the focus is on state machines, the consideration applies to every system that involves more than one execution thread.

Getting Started With CUDA C on an Nvidia Jetson: A Meaningful Algorithm
In this blog post, I demonstrate a use case and corresponding GPU implementation where meaningful performance gains are realized and observed. Specifically, I implement a "blurring" algorithm on a large 1000x1000 pixel image. I show that the GPU-based implementation is 1000x faster than the CPU-based implementation.

Five Embedded Linux Topics for Newbies !
Are you an embedded systems enthusiast looking to broaden your horizons with embedded Linux? explore those 5 topics.

Creating a GPIO HAL and Driver in C
Creating a GPIO Hardware Abstraction Layer (HAL) in C allows for flexible microcontroller interfacing, overcoming the challenge of variability across silicon vendors. This method involves reviewing datasheets, identifying features, designing interfaces, and iterative development, as detailed in the "Reusable Firmware" process. A simplified approach prioritizes essential functions like initialization and read/write operations, showcased through a minimal interface example. The post also highlights the use of AI to expedite HAL generation. A detailed GPIO HAL version is provided, featuring extended capabilities and facilitating driver connection through direct assignments or wrappers. The significance of a configuration table for adaptable peripheral setup is emphasized. Ultimately, the blog illustrates the ease and scalability of developing a GPIO HAL and driver in C, promoting hardware-independent and extensible code for various interfaces, such as SPI, I2C, PWM, and timers, underscoring the abstraction benefits.

How Embedded Linux is used in Spacecrafts !
This article dives into the application of Linux in spacecraft, examining the challenges it poses and proposing potential solutions. Real-life examples will be discussed, while also addressing the drawbacks of employing Linux in safety-critical missions.

How to Implement Image Processing Algorithms in FPGA Hardware
Recognized for their parallelism and reconfigurability, FPGAs prove ideal for real-time processing in medical imaging and computer vision. The step-by-step approach starts with understanding FPGA basics, emphasizing their reconfigurable nature and parallel processing. It guides users in algorithm selection based on factors like processing speed, resource utilization, and adaptability, then highlights designing modular and scalable algorithms. The process includes simulation for verification, synthesis using tools like Xilinx Vivado and Intel Quartus Prime, interfacing with image sensors, and testing on real hardware. The conclusion underscores FPGA's advantages in image processing, presenting ongoing opportunities for innovation in diverse industries.

Getting Started With Zephyr: Devicetree Overlays
In this blog post, I show how the Devicetree overlay is a valuable construct in The Zephyr Project RTOS. Overlays allow embedded software engineers to override the default pin configuration specified in Zephyr for a particular board. In this blog post, I use I2C as an example. Specifically, I showed the default I2C pins used for the nRF52840 development kit in the nominal Zephyr Devicetree. Then, I demonstrated how an overlay can be used to override this pin configuration and the final result.

New book on Elliptic Curve Cryptography
New book on Elliptic Curve Cryptography now online. Deep discount for early purchase. Will really appreciate comments on how to improve the book because physical printing won't happen for a few more months. Check it out here: http://mng.bz/D9NA

Getting Started With Zephyr: Devicetree Bndings
This blog post shines some light on how devicetrees are used in The Zephyr Project. Specifically, we understand the mechanisms that enable us to use nodes in the devicetree in the C source files. We use a sample provided in the Zephyr repository itself and work our way through portions of the Zephyr codebase to get insight into the mechanisms that make this possible.

Return of the Delta-Sigma Modulators, Part 1: Modulation
About a decade ago, I wrote two articles: Modulation Alternatives for the Software Engineer (November 2011) Isolated Sigma-Delta Modulators, Rah Rah Rah! (April 2013) Each of these are about delta-sigma modulation, but they’re...
