Forums

1.For last few days i have been trying to configure the ADC to measure the battery level. So here i am using the Reference voltage generator as ref to ADC.As we know we can't start ADC before the Ref local buffer settle down. So there are two ways to do this i guess 

1.By using REFGENRDY bit in REFCTL

2. By using the ADCRDYIFG interrupt

 Since i work on very power concerned application i adopt the ADC ready interrupt.but Eventhough i have enable the interrupt and set most of thing in right way (i believe)  the ADCRDY interrupt is not getting triggered.And there is a term called sample trigger (which can help the ADCRDYIFG) but i don't know how to set that signal

2. And i also can't wrap up head around the multiple ADCMCTL registers and CSTART ADDRX bit. what is the connection between these two registers.

So please drop your thoughts on my error and my question.


/* --COPYRIGHT--,BSD_EX

 * Copyright (c) 2015, Texas Instruments Incorporated

 * All rights reserved.

 *

 * Redistribution and use in source and binary forms, with or without

 * modification, are permitted provided that the following conditions

 * are met:

 *

 * *  Redistributions of source code must retain the above copyright

 *    notice, this list of conditions and the following disclaimer.

 *

 * *  Redistributions in binary form must reproduce the above copyright

 *    notice, this list of conditions and the following disclaimer in the

 *    documentation and/or other materials provided with the distribution.

 *

 * *  Neither the name of Texas Instruments Incorporated nor the names of

 *    its contributors may be used to endorse or promote products derived

 *    from this software without specific prior written permission.

 *

 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"

 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,

 * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR

 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,

 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;

 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR

 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,

 * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

 *

 *******************************************************************************

 *

 *                       MSP430 CODE EXAMPLE DISCLAIMER

 *

 * MSP430 code examples are self-contained low-level programs that typically

 * demonstrate a single peripheral function or device feature in a highly

 * concise manner. For this the code may rely on the device's power-on default

 * register values and settings such as the clock configuration and care must

 * be taken when combining code from several examples to avoid potential side

 * effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware

 * for an API functional library-approach to peripheral configuration.

 *

 * --/COPYRIGHT--*/

//******************************************************************************

//  MSP430FR5x9x Demo - ADC12, Sample A1, AVcc Ref, Set P1.0 if A1 > 0.5*AVcc

//

//   Description: A single sample is made on A1 with reference to AVcc.

//   Software sets ADC12SC to start sample and conversion - ADC12SC

//   automatically cleared at EOC. ADC12 internal oscillator times sample (16x)

//   and conversion. In Mainloop MSP430 waits in LPM0 to save power until ADC12

//   conversion complete, ADC12_ISR will force exit from LPM0 in Mainloop on

//   reti. If A1 > 0.5*AVcc, P1.0 set, else reset. The full, correct handling of

//   and ADC12 interrupt is shown as well.

//

//

//                MSP430FR5994

//             -----------------

//         /|\|              XIN|-

//          | |                 |

//          --|RST          XOUT|-

//            |                 |

//        >---|P1.1/A1      P1.0|-->LED

//

//   William Goh

//   Texas Instruments Inc.

//   October 2015

//   Built with IAR Embedded Workbench V6.30 & Code Composer Studio V6.1

//******************************************************************************

#include <msp430.h>

int main(void)

{

    WDTCTL = WDTPW | WDTHOLD;               // Stop WDT

    // GPIO Setup

    P1OUT &= ~BIT0;                         // Clear LED to start

    P1DIR |= BIT0;                          // Set P1.0/LED to output

    P1SEL1 |= BIT2;                         // Configure P1.1 for ADC

    P1SEL0 |= BIT2;

    // Disable the GPIO power-on default high-impedance mode to activate

    // previously configured port settings

    PM5CTL0 &= ~LOCKLPM5;

    // Configure Ref voltage generator

    REFCTL0 |=REFVSEL_3|REFON;

    // Configure ADC12

    ADC12CTL0 = ADC12SHT0_2 | ADC12ON;      // Sampling time, S&H=16, ADC12 on

    ADC12CTL1 = ADC12SHP;                   // Use sampling timer

    ADC12CTL2 |= ADC12RES_2;                // 12-bit conversion results

    ADC12MCTL1|= ADC12INCH_2|ADC12VRSEL_1;              // A1 ADC input select; Vref=AVCC

    ADC12IER0 |= ADC12IE0;                  // Enable ADC conv complete interrupt

    ADC12IER2 |=ADC12RDYIE;

    __enable_interrupt();

    while (1)

    {

        while(!(REFCTL0 & REFGENRDY));          // Wait for reference generator

        __delay_cycles(5000);

        ADC12CTL0 |= ADC12ENC

                  | ADC12SC;    // Start sampling/conversion

        __bis_SR_register(LPM0_bits | GIE); // LPM0, ADC12_ISR will force exit

        __no_operation();                   // For debugger

    }

}

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)

#pragma vector = ADC12_B_VECTOR

__interrupt void ADC12_ISR(void)

#elif defined(__GNUC__)

void __attribute__ ((interrupt(ADC12_B_VECTOR))) ADC12_ISR (void)

#else

#error Compiler not supported!

#endif

{

    switch(__even_in_range(ADC12IV, ADC12IV__ADC12RDYIFG))

    {

        case ADC12IV__NONE:        __no_operation(); break;   // Vector  0:  No interrupt

        case ADC12IV__ADC12OVIFG:  __no_operation(); break;   // Vector  2:  ADC12MEMx Overflow

        case ADC12IV__ADC12TOVIFG: __no_operation(); break;   // Vector  4:  Conversion time overflow

        case ADC12IV__ADC12HIIFG:  __no_operation(); break;   // Vector  6:  ADC12BHI

        case ADC12IV__ADC12LOIFG:  __no_operation(); break;   // Vector  8:  ADC12BLO

        case ADC12IV__ADC12INIFG:  __no_operation(); break;   // Vector 10:  ADC12BIN

        case ADC12IV__ADC12IFG0:            // Vector 12:  ADC12MEM0 Interrupt

            if (ADC12MEM0 >= 0x7ff)         // ADC12MEM0 = A1 > 0.5AVcc?

                P1OUT |= BIT0;              // P1.0 = 1

            else

                P1OUT &= ~BIT0;             // P1.0 = 0

                // Exit from LPM0 and continue executing main

                __bic_SR_register_on_exit(LPM0_bits);

            __no_operation(); break;

        case ADC12IV__ADC12IFG1:   __no_operation(); break;   // Vector 14:  ADC12MEM1

        case ADC12IV__ADC12IFG2:   __no_operation(); break;   // Vector 16:  ADC12MEM2

        case ADC12IV__ADC12IFG3:   __no_operation(); break;   // Vector 18:  ADC12MEM3

        case ADC12IV__ADC12IFG4:   __no_operation(); break;   // Vector 20:  ADC12MEM4

        case ADC12IV__ADC12IFG5:   __no_operation(); break;   // Vector 22:  ADC12MEM5

        case ADC12IV__ADC12IFG6:   __no_operation(); break;   // Vector 24:  ADC12MEM6

        case ADC12IV__ADC12IFG7:   __no_operation(); break;   // Vector 26:  ADC12MEM7

        case ADC12IV__ADC12IFG8:   __no_operation(); break;   // Vector 28:  ADC12MEM8

        case ADC12IV__ADC12IFG9:   __no_operation(); break;   // Vector 30:  ADC12MEM9

        case ADC12IV__ADC12IFG10:  __no_operation(); break;   // Vector 32:  ADC12MEM10

        case ADC12IV__ADC12IFG11:  __no_operation(); break;   // Vector 34:  ADC12MEM11

        case ADC12IV__ADC12IFG12:  __no_operation(); break;   // Vector 36:  ADC12MEM12

        case ADC12IV__ADC12IFG13:  __no_operation(); break;   // Vector 38:  ADC12MEM13

        case ADC12IV__ADC12IFG14:  __no_operation(); break;   // Vector 40:  ADC12MEM14

        case ADC12IV__ADC12IFG15:  __no_operation(); break;   // Vector 42:  ADC12MEM15

        case ADC12IV__ADC12IFG16:  __no_operation(); break;   // Vector 44:  ADC12MEM16

        case ADC12IV__ADC12IFG17:  __no_operation(); break;   // Vector 46:  ADC12MEM17

        case ADC12IV__ADC12IFG18:  __no_operation(); break;   // Vector 48:  ADC12MEM18

        case ADC12IV__ADC12IFG19:  __no_operation(); break;   // Vector 50:  ADC12MEM19

        case ADC12IV__ADC12IFG20:  __no_operation(); break;   // Vector 52:  ADC12MEM20

        case ADC12IV__ADC12IFG21:  __no_operation(); break;   // Vector 54:  ADC12MEM21

        case ADC12IV__ADC12IFG22:  __no_operation(); break;   // Vector 56:  ADC12MEM22

        case ADC12IV__ADC12IFG23:  __no_operation(); break;   // Vector 58:  ADC12MEM23

        case ADC12IV__ADC12IFG24:  __no_operation(); break;   // Vector 60:  ADC12MEM24

        case ADC12IV__ADC12IFG25:  __no_operation(); break;   // Vector 62:  ADC12MEM25

        case ADC12IV__ADC12IFG26:  __no_operation(); break;   // Vector 64:  ADC12MEM26

        case ADC12IV__ADC12IFG27:  __no_operation(); break;   // Vector 66:  ADC12MEM27

        case ADC12IV__ADC12IFG28:  __no_operation(); break;   // Vector 68:  ADC12MEM28

        case ADC12IV__ADC12IFG29:  __no_operation(); break;   // Vector 70:  ADC12MEM29

        case ADC12IV__ADC12IFG30:  __no_operation(); break;   // Vector 72:  ADC12MEM30

        case ADC12IV__ADC12IFG31:  __no_operation(); break;   // Vector 74:  ADC12MEM31

        case ADC12IV__ADC12RDYIFG:

            ADC12CTL0 |= ADC12ENC | ADC12SC;    // Start sampling/conversion

            __no_operation();

            break;   // Vector 76:  ADC12RDY

        default: __no_operation(); break;

    }

}