Beyond the RTOS: A Better Way to Design Real-Time Embedded Software

Miro Samek April 27, 20167 comments

An RTOS (Real-Time Operating System) is the most universally accepted way of designing and implementing embedded software. It is the most sought after component of any system that outgrows the venerable "superloop". But it is also the design strategy that implies a certain programming paradigm, which leads to particularly brittle designs that often work only by chance. I'm talking about sequential programming based on blocking.

Blocking occurs any time you wait explicitly in-line for...


Cutting Through the Confusion with ARM Cortex-M Interrupt Priorities

Miro Samek February 26, 2016

The insanely popular ARM Cortex-M processor offers very versatile interrupt priority management, but unfortunately, the multiple priority numbering conventions used in managing the interrupt priorities are often counter-intuitive, inconsistent, and confusing, which can lead to bugs. In this post I attempt to explain the subject and cut through the confusion.

The Inverse Relationship Between Priority Numbers and Urgency of the Interrupts

The most important fact to know is that ARM...


Beyond the RTOS: A Better Way to Design Real-Time Embedded Software

Miro Samek April 27, 20167 comments

An RTOS (Real-Time Operating System) is the most universally accepted way of designing and implementing embedded software. It is the most sought after component of any system that outgrows the venerable "superloop". But it is also the design strategy that implies a certain programming paradigm, which leads to particularly brittle designs that often work only by chance. I'm talking about sequential programming based on blocking.

Blocking occurs any time you wait explicitly in-line for...


Cutting Through the Confusion with ARM Cortex-M Interrupt Priorities

Miro Samek February 26, 2016

The insanely popular ARM Cortex-M processor offers very versatile interrupt priority management, but unfortunately, the multiple priority numbering conventions used in managing the interrupt priorities are often counter-intuitive, inconsistent, and confusing, which can lead to bugs. In this post I attempt to explain the subject and cut through the confusion.

The Inverse Relationship Between Priority Numbers and Urgency of the Interrupts

The most important fact to know is that ARM...