

Getting Started With Zephyr: Kconfig
In this blog post, we briefly look at Kconfig, one of the core pieces of the Zephyr infrastructure. Kconfig allows embedded software developers to turn specific subsystems on or off within Zephyr efficiently and control their behavior. We also learn how we can practically use Kconfig to control the features of our application using the two most common mechanisms.

An Iterative Approach to USART HAL Design using ChatGPT
Discover how to leverage ChatGPT and an iterative process to design and generate a USART Hardware Abstraction Layer (HAL) for embedded systems, enhancing code reusability and scalability. Learn the step-by-step journey, improvements made, and the potential for generating HALs for other peripherals.

Modern C++ in Embedded Development: (Don't Fear) The ++
While C is still the language of choice for embedded development, the adoption of C++ has grown steadily. Yet, reservations about dynamic memory allocation and fears of unnecessary code bloat have kept many in the C camp. This discourse aims to explore the intricacies of employing C++ in embedded systems, negotiating the issues of dynamic memory allocation, and exploiting the benefits of C++ offerings like std::array and constexpr. Moreover, it ventures into the details of the zero-overhead principle and the nuanced distinctions between C and C++. The takeaway? Armed with the right knowledge and a careful approach, C++ can indeed serve as a powerful, safer, and more efficient tool for embedded development.

Moulding the Embedded Systems Engineers of Tomorrow: Adapting to a Constantly Transforming Technological Terrain
Embedded systems engineers, previously focused on device architecture, are now steering the digital era, encompassing firmware, software, complex silicon, and cloud computing. To keep pace, mastery in new areas like cybersecurity, artificial intelligence (AI), machine learning (ML), and cloud technologies is critical. In today's highly connected world, security is foundational to design, necessitating knowledge in encryption, secure coding, and data protection laws. Additionally, expertise in AI and ML is essential for managing vast global data, requiring understanding of ethical implications and effective system design for data analysis. The advent of cloud technology mandates learning about cloud architectures and data security. In this fast-paced field, continuous learning and adapting these new skills is the key to staying relevant and spearheading future advancements.

Getting Started with (Apache) NuttX RTOS - Part 1
NuttX RTOS is used in many products from companies like Sony, Xiaomi, Samsung, Google/Fitbit, WildernessLabs and many other companis. So, probably you are already using NuttX even without knowing it, like the you was using Linux on your TV, WiFi router more than 10 years ago and didn't know too! Today you will have the chance to discover a little bit of this fantastic Linux-like RTOS! Are you ready? So, let's get started!

Working with Strings in Embedded C++
This article discusses the use of strings in embedded systems. It explains how the need for and use of strings in embedded systems has changed with the advent of cheaper, full graphic displays and the growth of the ‘Internet of Things’ (IoT). The article also covers character literals, C-Strings and string literals, and the difference in memory models between them. It also highlights the safety and security issues that arise from using strings in embedded systems. Finally, it explains how C++11 introduced a Raw string literal type that is useful for storing file paths or regular expressions.

Return of the Delta-Sigma Modulators, Part 1: Modulation
About a decade ago, I wrote two articles: Modulation Alternatives for the Software Engineer (November 2011) Isolated Sigma-Delta Modulators, Rah Rah Rah! (April 2013) Each of these are about delta-sigma modulation, but they’re...

C to C++: Bridging the Gap from C Structures to Classes
In our last post, C to C++: Proven Techniques for Embedded Systems Transformation, we started to discuss the different ways that C++ can be used to write embedded software. You saw that there is no reason to be overwhelmed by trying to adopt...

The Missing Agile Conversation
Contents: Executive Summary Manager Summary Developer Summary Background A Better Way Forward Having The Conversation Topic Checklist Capturing Information Tests Documentation Breaking Up Stories Spikes Executive...

Working with Microchip PIC 8-bit GPIO
The third in a series of five posts looks at GPIO with PIC 8-bit microcontrollers. After a detailed review of the registers for configuring and managing GPIO on the PIC18F47Q10 processor, a basic application is stood up programming those registers to blink external LEDs at 0.5Hz.

BusyBox; The Swiss Army Knife of Embedded Linux
In this article we cover the BusyBox, how it's designed to be optimized for embedded targets, and how to configure and build it in different ways, we also covered the license and limitation, which led to the development of ToyBox, I hope you enjoyed the article, please leave a comment for any correction or suggestions.

What is Pulse Width Modulation and How Does It Work?
Pulse Width Modulation (PWM) is a technique used to control the average voltage supplied to a device or component by adjusting the width of a series of pulses. It works by rapidly turning a signal on and off at a specific frequency. The crucial element of PWM is the duty cycle, which represents the percentage of time the signal is “on” (high voltage) compared to the total time of one cycle.
