
An Engineer's Guide to the LPC2100 Series
●7 commentsThis book is intended as a hands-on guide for anyone planning to use the Philips LPC2000 family of microcontrollers in a new design. It is laid out both as a reference book and as a tutorial. It is assumed that you have some experience in programming microcontrollers for embedded systems and are familiar with the C language. The bulk of technical information is spread over the first four chapters, which should be read in order if you are completely new to the LPC2000 and the ARM7 CPU.

Choosing An Ultralow-Power MCU
This application report describes how to compare ultralow-power MCUs. It discusses the key differences between popular low-power MCUs and how to interpret features and specifications and apply them to application requirements

Interrupts, Low Power Modes and Timer A
This document contains a lot of what you need to know to get the most out of the MSP430. The MSP430 line is renowned for it's low power usage, and to really utilize it well you have to architect your software to be an interrupt driven device that utilizes the low power modes.

PID Without a PhD
●8 commentsPID (proportional, integral, derivative) control is not as complicated as it sounds. Follow these simple implementation steps for quick results.

Reed-Solomon Error Correction
[Best paper on Reed-Solomon error correction I have ever read -- and it's from the BBC!] Reed-Solomon error correction has several applications in broadcasting,in particular forming part of the specification for the ETSI digital terrestrial television standard, known as DVB-T. Hardware implementations of coders and decoders for Reed-Solomon error correction are complicated and require some knowledge of the theory of Galois fields on which they are based. This note describes the underlying mathematics and the algorithms used for coding and decoding,with particular emphasis on their realisation in logic circuits. Worked examples are provided to illustrate the processes involved.

Memory allocation in C
●5 commentsThis article is about dynamic memory allocation in C in the context of embedded programming. It describes the process of dynamically allocating memory with visual aids. The article concludes with a practical data communications switch example which includes a sample code in C.

Advanced Linux Programming
●6 commentsThis book is intended for learning advanced linux programming.

Red Hat Linux - The Complete Reference
This book identifies seven major Linux topics: basic setup, environments and applications, the Internet, servers, administration, and network administration. These topics are integrated into the different ways Red Hat presents its distribution: as a desktop workstation, network workstation, server, and development platform

Essential Linux Device Drivers
●5 commentsThis book is about writing Linux device drivers. It covers the design and development of major device classes supported by the kernel, including those I missed during my Linux-on-Watch days. The discussion of each driver family starts by looking at the corresponding technology, moves on to develop a practical example, and ends by looking at relevant kernel source files. Before foraying into the world of device drivers, however, this book introduces you to the kernel and discusses the important features of 2.6 Linux, emphasizing those portions that are of special interest to device driver writers.

CPU Memory - What Every Programmer Should Know About Memory
●6 commentsAs CPU cores become both faster and more numerous, the limiting factor for most programs is now, and will be for some time, memory access. Hardware designers have come up with ever more sophisticated memory handling and acceleration techniques–such as CPU caches–but these cannot work optimally without some help from the programmer. Unfortunately, neither the structure nor the cost of using the memory subsystem of a computer or the caches on CPUs is well understood by most programmers. This paper explains the structure of memory subsystems in use on modern commodity hardware, illustrating why CPU caches were developed, how they work, and what programs should do to achieve optimal performance by utilizing them.

Interrupts, Low Power Modes and Timer A
This document contains a lot of what you need to know to get the most out of the MSP430. The MSP430 line is renowned for it's low power usage, and to really utilize it well you have to architect your software to be an interrupt driven device that utilizes the low power modes.

Embedded Linux Primer
●4 commentsThis book brings together indispensable knowledge for building efficient, high-value, Linux-based embedded products: information that has never been assembled in one place before. Drawing on years of experience as an embedded Linux consultant and field application engineer, Christopher Hallinan offers solutions for the specific technical issues you're most likely to face, demonstrates how to build an effective embedded Linux environment, and shows how to use it as productively as possible.

Introduction to Embedded Systems
This is the first chapter in the book Embedded Systems Hardware for Software Engineers.

Boosting Performance Oscilloscope Versatility, Scalability Whitepaper
Rising data communication rates are driving the need for very high-bandwidth real-time oscilloscopes in the range of 60-70 GHz. These instruments are essential for validating and debugging new designs in coherent optical modulation analysis, high energy physics research, high speed data communications and other areas. With the DPO70000SX Performance Oscilloscope series, Tektronix delivers real-time signal acquisition with an ultra-high bandwidth of 70 GHz, along with a real-time sample rate of 200 GS/s (5ps/sample resolution), making it ideal for such applications.

New Life for Embedded Systems in the Internet of Things
The Internet of Things (IoT) is no longer a fanciful vision. It is very much with us, in everything from factory automation to on-demand entertainment. Yet by most accounts, the full potential of interconnected systems and intelligent devices for changing the way we work and live has barely been tapped. Up until now, IoT software solutions have largely had to be built from scratch with a high degree of customization to specific requirements, which has driven up the cost and complexity of development and deterred many prospective entrants to the market. What have been missing are developer tools that alleviate the costs associated with building the foundational infrastructure—the “plumbing” of their solutions—so they can focus on optimizing the core functionality and bring solutions to market more quickly with less cost. Wind River® is addressing these challenges with new solutions that have the potential to expand the market for IoT by reducing the cost and complexity of development. This document outlines the challenges that IoT poses for developers, and how Wind River solutions can help overcome them.

Software Development for Parallel and Multi-Core Processing
●1 commentThe embedded software industry wants microprocessors with increased computing functionality that maintains or reduces space, weight, and power (SWaP). Single core processors were the key embedded industry solution between 1980 and 2000 when large performance increases were being achieved on a yearly basis and were fulfilling the prophecy of Moore's Law. Moore's Law states that "the number of transistors that can be placed inexpensively on an integrated circuit doubles approximately every two years." With the increased transistors, came microprocessors with greater computing throughput while space, weight and power were decreasing. However, this 'free lunch' did not last forever. The additional power required for greater performance improvements became too great starting in 2000. Hence, single core microprocessors are no longer an optimal solution.

Consistent Overhead Byte Stuffing
Byte stuffing is a process that transforms a sequence of data bytes that may contain ‘illegal’ or ‘reserved’ values into a potentially longer sequence that contains no occurrences of those values. The extra length is referred to in this paper as the overhead of the algorithm. To date, byte stuffing algorithms, such as those used by SLIP [RFC1055], PPP [RFC1662] and AX.25 [ARRL84], have been designed to incur low average overhead but have made little effort to minimize worst case overhead. Some increasingly popular network devices, however, care more about the worst case. For example, the transmission time for ISM-band packet radio transmitters is strictly limited by FCC regulation. To adhere to this regulation, the practice is to set the maximum packet size artificially low so that no packet, even after worst case overhead, can exceed the transmission time limit. This paper presents a new byte stuffing algorithm, called Consistent Overhead Byte Stuffing (COBS), that tightly bounds the worst case overhead. It guarantees in the worst case to add no more than one byte in 254 to any packet. Furthermore, the algorithm is computationally cheap, and its average overhead is very competitive with that of existing algorithms.

Time in Wireless Embedded System
●1 commentWireless embedded networks have matured beyond academic research as industry now considers the advantages of using wireless sensors. With this growth, reliability and real-time demands increase, thus timing becomes more and more relevant. In this dissertation, we focus on the development of highly stable, low-power clock systems for wireless embedded systems. Wireless embedded networks, due to their wire-free nature, present one of the most extreme power budget design challenges in the field of electronics. Improvements in timing can reduce the energy required to operate an embedded network. However, the more accurate a time source is, the more power it consumes. To comprehensively address the time and power problems in wireless embedded systems, this dissertation studies the exploitation of dual-crystal clock architectures to combat effects of temperature induced frequency error and high power consumption of high-frequency clocks. Combining these architectures with the inherent communication capabilities of wireless embedded systems, this dissertation proposes two new technologies; (1) a new time synchronization service that automatically calibrates a local clock to changes in temperature; (2) a high-low frequency timer that allows a duty-cycled embedded system to achieve ultra low-power sleep, while keeping fine granularity time resolution offered only by high power, high frequency clocks.

Creating a State-of-the Art, Cost Effective Energy Harvesting Bluetooth® Low Energy Switch
As IoT rapidly grows into new markets such as MHealth, Agriculture 4.0, and building automation, new questions are being raised about the energy required to support its growth. Within the industry, we see a broad spectrum of power requirements.

Electrical Ground Rules Part 3
Best Practices for Grounding Your Electrical Equipment Examining the role of ground as a voltage stabilizer and transient limiter, along with tips on improving safety and signal integrity (Part 3 of 3)