The volatile keyword
Although the C keyword volatile is very useful in embedded applications, care is needed to use it correctly and vigilance is required to ensure its correct implementation by compilers.
When a Mongoose met a MicroPython, part I
This is more a framework than an actual application, with it you can integrate MicroPython and Cesanta's Mongoose.
Mongoose runs when called by MicroPython and is able to run Python functions as callbacks for the events you decide in your event handler. The code is completely written in C, except for the example Python callback functions, of course. To try it, you can just build this example on a Linux machine, and, with just a small tweak, you can also run it on any ESP32 board.
Getting Started With CUDA C on an Nvidia Jetson: GPU Architecture
In the previous blog post (Getting Started With CUDA C on Jetson Nvidia: Hello CUDA World!) I showed how to develop applications targeted at a GPU on a Nvidia Jetson Nano. As we observed in that blog post, performing a calculation on a 1-D array on a GPU had no performance benefit compared to a traditional CPU implementation, even on an array with many elements. In this blog post, we will learn about the GPU architecture to better explain the behavior and to understand the applications where a GPU shines (hint: it has to do with graphics).
C to C++: Templates and Generics – Supercharging Type Flexibility
"C to C++: Templates and Generics – Supercharging Type Flexibility" illuminates the rigidity of C when managing multiple types and the confusion of code replication or macro complexity. In contrast, C++ offers templates, acting as type-agnostic blueprints for classes and functions, which allows for the creation of versatile and reusable code without redundancy. By using templates, developers can define operations like add once and apply them to any data type, simplifying codebases significantly. Generics further this concept, enabling a single code structure to handle diverse data types efficiently—a boon for embedded systems where operations must be performed on varying data, yet code efficiency is critical due to resource limitations. The blog walks through practical applications, showcasing how templates streamline processes and ensure type safety with static_assert, all while weighing the pros and cons of their use in embedded software, advocating for careful practice to harness their full potential.
Finite State Machines (FSM) in Embedded Systems (Part 2) - Simple C++ State Machine Engine
When implementing state machines in your project it is an advantage to rely on a tried and tested state machine engine. This component is reused for every kind of application and helps the developer focus on the domain part of the software. In this article, the design process that turns a custom C++ code into a finite-state machine engine is fully described with motivations and tradeoffs for each iteration.
Creating a GPIO HAL and Driver in C
Creating a GPIO Hardware Abstraction Layer (HAL) in C allows for flexible microcontroller interfacing, overcoming the challenge of variability across silicon vendors. This method involves reviewing datasheets, identifying features, designing interfaces, and iterative development, as detailed in the "Reusable Firmware" process. A simplified approach prioritizes essential functions like initialization and read/write operations, showcased through a minimal interface example. The post also highlights the use of AI to expedite HAL generation. A detailed GPIO HAL version is provided, featuring extended capabilities and facilitating driver connection through direct assignments or wrappers. The significance of a configuration table for adaptable peripheral setup is emphasized. Ultimately, the blog illustrates the ease and scalability of developing a GPIO HAL and driver in C, promoting hardware-independent and extensible code for various interfaces, such as SPI, I2C, PWM, and timers, underscoring the abstraction benefits.
Getting Started With Zephyr: Bluetooth Low Energy
In this blog post, I show how to enable BLE support in a Zephyr application. First, I show the necessary configuration options in Kconfig. Then, I show how to use the Zephyr functions and macros to create a custom service and characteristic for a contrived application.
++i and i++ : what’s the difference?
Although the ++ and -- operators are well known, there are facets of their operation and implementation that are less familiar to many developers.
Lightweight C++ Error-Codes Handling
The traditional C++ approach to error handling tends to distinguish the happy path from the unhappy path. This makes handling errors hard (or at least boring) to write and hard to read. In this post, I present a technique based on chaining operations that merges the happy and the unhappy paths. Thanks to C++ template and inlining the proposed technique is lightweight and can be used proficiently for embedded software.
Creating a Hardware Abstraction Layer (HAL) in C
In my last post, C to C++: Using Abstract Interfaces to Create Hardware Abstraction Layers (HAL), I discussed how vital hardware abstraction layers are and how to use a C++ abstract interface to create them. You may be thinking, that’s great for C++, but I work in C! How do I create a HAL that can easily swap in and out different drivers? In today’s post, I will walk through exactly how to do that while using the I2C bus as an example.
Picowoose: The Raspberry Pi Pico-W meets Mongoose
This example application describes the way to adapt the George Robotics CYW43 driver, present in the Pico-SDK, to work with Cesanta's Mongoose. We are then able to use Mongoose internal TCP/IP stack (with TLS 1.3), instead of lwIP (and MbedTLS).
Creating a GPIO HAL and Driver in C
Creating a GPIO Hardware Abstraction Layer (HAL) in C allows for flexible microcontroller interfacing, overcoming the challenge of variability across silicon vendors. This method involves reviewing datasheets, identifying features, designing interfaces, and iterative development, as detailed in the "Reusable Firmware" process. A simplified approach prioritizes essential functions like initialization and read/write operations, showcased through a minimal interface example. The post also highlights the use of AI to expedite HAL generation. A detailed GPIO HAL version is provided, featuring extended capabilities and facilitating driver connection through direct assignments or wrappers. The significance of a configuration table for adaptable peripheral setup is emphasized. Ultimately, the blog illustrates the ease and scalability of developing a GPIO HAL and driver in C, promoting hardware-independent and extensible code for various interfaces, such as SPI, I2C, PWM, and timers, underscoring the abstraction benefits.
C to C++: 5 Tips for Refactoring C Code into C++
The article titled "Simple Tips to Refactor C Code into C++: Improve Embedded Development" provides essential guidance for embedded developers transitioning from C to C++. The series covers fundamental details necessary for a seamless transition and emphasizes utilizing C++ as a better C rather than diving into complex language features. The article introduces five practical tips for refactoring C code into C++. Replace #define with constexpr and const: Discouraging the use of #define macros, the article advocates for safer alternatives like constexpr and const to improve type safety, debugging, namespaces, and compile-time computation. Use Namespaces: Demonstrating the benefits of organizing code into separate logical groupings through namespaces, the article explains how namespaces help avoid naming conflicts and improve code readability. Replace C-style Pointers with Smart Pointers and References: Emphasizing the significance of avoiding raw pointers, the article suggests replacing them with C++ smart pointers (unique_ptr, shared_ptr, weak_ptr) and using references
Review: Hands-On RTOS with Microcontrollers
Full disclosure: I was given a free copy of this book for evaluation.
Hands-On RTOS with Microcontrollers: Building real-time embedded systems using FreeRTOS, STM32 MCUs, and SEGGER debug tools by Brian Amos is an outstanding book. It lives up to its name, extremely hands-on and practical, taking you from knowing nothing about RTOS's (Real-Time Operating Systems) up to building real multithreaded embedded system applications running on real hardware.
It uses the ST Micro
++i and i++ : what’s the difference?
Although the ++ and -- operators are well known, there are facets of their operation and implementation that are less familiar to many developers.
C++ Assertion? Well Yes, But Actually No.
Assertions are a double-edged sword - on one side you enforce program correctness catching bugs close to their origin, on the other your application is subject to run-time error, like any interpreted language. This article explores what C++ can offer to get the advantages of assertions, without risking the crashes by moving contract checking at compile time.
Lightweight C++ Error-Codes Handling
The traditional C++ approach to error handling tends to distinguish the happy path from the unhappy path. This makes handling errors hard (or at least boring) to write and hard to read. In this post, I present a technique based on chaining operations that merges the happy and the unhappy paths. Thanks to C++ template and inlining the proposed technique is lightweight and can be used proficiently for embedded software.
C to C++: Bridging the Gap from C Structures to Classes
In our last post, C to C++: Proven Techniques for Embedded Systems Transformation, we started to discuss the different ways that C++ can be used to write embedded software. You saw that there is no reason to be overwhelmed by trying to adopt complex topics like metaprogramming out of the gate. An important concept to understand is that you can make the transition gradually into C++ while still receiving the many benefits that C++ has to offer.
One of the first...
Getting Started With Zephyr: Bluetooth Low Energy
In this blog post, I show how to enable BLE support in a Zephyr application. First, I show the necessary configuration options in Kconfig. Then, I show how to use the Zephyr functions and macros to create a custom service and characteristic for a contrived application.
C to C++: 3 Proven Techniques for Embedded Systems Transformation
For 50 years, the C programming language has dominated the embedded software industry. Even today, more than 80% of embedded projects are using C; however, over the last few years, many teams have begun transitioning from C to C++. C++ offers embedded developers a robust, modern set of tools that can be used to write flexible, scalable, and reusable applications. As embedded applications become more complex and connected, teams need a more modern language to help them deal with the software...
C to C++: 3 Proven Techniques for Embedded Systems Transformation
For 50 years, the C programming language has dominated the embedded software industry. Even today, more than 80% of embedded projects are using C; however, over the last few years, many teams have begun transitioning from C to C++. C++ offers embedded developers a robust, modern set of tools that can be used to write flexible, scalable, and reusable applications. As embedded applications become more complex and connected, teams need a more modern language to help them deal with the software...
Finite State Machines (FSM) in Embedded Systems (Part 2) - Simple C++ State Machine Engine
When implementing state machines in your project it is an advantage to rely on a tried and tested state machine engine. This component is reused for every kind of application and helps the developer focus on the domain part of the software. In this article, the design process that turns a custom C++ code into a finite-state machine engine is fully described with motivations and tradeoffs for each iteration.
NULL pointer protection with ARM Cortex-M MPU
This post explains how you can set up the ARM Cortex-M MPU (Memory Protection Unit) to protect thy code from dragons, demons, core dumps, and numberless other foul creatures awaiting thee after thou dereference the NULL pointer.
C to C++: Templates and Generics – Supercharging Type Flexibility
"C to C++: Templates and Generics – Supercharging Type Flexibility" illuminates the rigidity of C when managing multiple types and the confusion of code replication or macro complexity. In contrast, C++ offers templates, acting as type-agnostic blueprints for classes and functions, which allows for the creation of versatile and reusable code without redundancy. By using templates, developers can define operations like add once and apply them to any data type, simplifying codebases significantly. Generics further this concept, enabling a single code structure to handle diverse data types efficiently—a boon for embedded systems where operations must be performed on varying data, yet code efficiency is critical due to resource limitations. The blog walks through practical applications, showcasing how templates streamline processes and ensure type safety with static_assert, all while weighing the pros and cons of their use in embedded software, advocating for careful practice to harness their full potential.
Lightweight C++ Error-Codes Handling
The traditional C++ approach to error handling tends to distinguish the happy path from the unhappy path. This makes handling errors hard (or at least boring) to write and hard to read. In this post, I present a technique based on chaining operations that merges the happy and the unhappy paths. Thanks to C++ template and inlining the proposed technique is lightweight and can be used proficiently for embedded software.
Memory Mapped I/O in C
Interacting with memory mapped device registers is at the base of all embedded development. Let's explore what tools the C language - standard of the industry - provide the developer with to face this task.
A Beginner's Guide to Embedded Systems
I was in my Junior year of college when I first learned about embedded systems. Sure, I’d heard about this mystical world of sensors and IoT, the same way I’d heard about thermonuclear astrophysics; But, the phrase “embedded systems” didn’t really mean anything to me. This, here, is a guide for people like teenage me. We’re going to learn what an embedded system actually is, and why working on embedded software is the coolest thing you could ever do!
What's an embedded...Some Embedded System Software Design Resources
I recently received a message from an embedded systems engineer in England asking about a good resource for embedded system software design and easing debugging difficulties.
That's challenging because embedded systems cover such a wide range. There are many possible run-time environments and architectures.
Thus there's no single resource that covers all ground. However, the resources below provide a lot of good material. In aggregate, they make up a good set from which to pull various...
Finite State Machines (FSM) in Embedded Systems (Part 4) - Let 'em talk
No state machine is an island. State machines do not exist in a vacuum, they need to "talk" to their environment and each other to share information and provide synchronization to perform the system functions. In this conclusive article, you will find what kind of problems and which critical areas you need to pay attention to when designing a concurrent system. Although the focus is on state machines, the consideration applies to every system that involves more than one execution thread.
Working with Strings in Embedded C++
This article discusses the use of strings in embedded systems. It explains how the need for and use of strings in embedded systems has changed with the advent of cheaper, full graphic displays and the growth of the ‘Internet of Things’ (IoT). The article also covers character literals, C-Strings and string literals, and the difference in memory models between them. It also highlights the safety and security issues that arise from using strings in embedded systems. Finally, it explains how C++11 introduced a Raw string literal type that is useful for storing file paths or regular expressions.