Autonomous vehicle - design questions to ponder
When designing an autonomous or remotely-controlled vehicle, there are a few factors to take into consideration. Three of these are purpose, environment, and terrain.
What is the purpose of the vehicle?
Will it be used in an industrial setting with people moving around it that it must not run over?
Will it be used in a hazardous environment, like Fukushima or Chernobyl, where it would be exposed to high levels of radiation and must be cleaned or left behind? If it must be left behind, any...
Margin Call: Fermi Problems, Highway Horrors, Black Swans, and Why You Should Worry About When You Should Worry
“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don’t know. But there are also unknown unknowns — there are things we do not know we don’t know.” — Donald Rumsfeld, February 2002
Today’s topic is engineering margin.
XKCD had a what-if column involving Fermi...
Coding Step 4 - Design
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
The last article in this series discussed how to write functional high-level requirements: specifications for what your software is supposed to do. Software design is the other side of the coin....
The three laws of safe embedded systems
This short article is part of an ongoing series in which I aim to explore some techniques that may be useful for developers and organisations that are beginning their first safety-related embedded project.
In the last two weeks, I’ve had the opportunity to discuss the contents of my previous article on this site with a group of very smart and enthusiastic engineers in Cairo (Egypt). As part of this discussion, it has become clear that I should add a few more details to explain the work...
Developing software for a safety-related embedded system for the first time
I spend most of my working life with organisations that develop software for high-reliability, real-time embedded systems. Some of these systems are created in compliance with IEC 61508, ISO 26262, DO-178C or similar international standards.
When working with organisations that are developing software for their first safety-related design, I’m often asked to identify the key issues that distinguish this process from the techniques used to develop “ordinary” embedded software.
...“Smarter” cars, unintended acceleration – and unintended consequences
In this article, I consider some recent press reports relating to embedded software in the automotive sector.
In The Times newspaper (London, 2015-10-16) the imminent arrival of Tesla cars that “use autopilot technology to park themselves and change lane without intervention from the driver” was noted.
By most definitions, the Tesla design incorporates what is sometimes called “Artificial Intelligence” (AI).Others might label it a “Smart” (or at least “Smarter”)...
Important Programming Concepts (Even on Embedded Systems) Part V: State Machines
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part VI: Abstraction
Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.
Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...
Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part V: State Machines
- Part VI: Abstraction
Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but
The CRC Wild Goose Chase: PPP Does What?!?!?!
I got a bad feeling yesterday when I had to include reference information about a 16-bit CRC in a serial protocol document I was writing. And I knew it wasn’t going to end well.
The last time I looked into CRC algorithms was about five years ago. And the time before that… sometime back in 2004 or 2005? It seems like it comes up periodically, like the seventeen-year locust or sunspots or El Niño,...
Important Programming Concepts (Even on Embedded Systems) Part III: Volatility
1vol·a·tile adjective \ˈvä-lə-təl, especially British -ˌtī(-ə)l\ : likely to change in a very sudden or extreme way : having or showing extreme or sudden changes of emotion : likely to become dangerous or out of control
— Merriam-Webster Online Dictionary
Other articles in this series:
Margin Call: Fermi Problems, Highway Horrors, Black Swans, and Why You Should Worry About When You Should Worry
“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don’t know. But there are also unknown unknowns — there are things we do not know we don’t know.” — Donald Rumsfeld, February 2002
Today’s topic is engineering margin.
XKCD had a what-if column involving Fermi...
The CRC Wild Goose Chase: PPP Does What?!?!?!
I got a bad feeling yesterday when I had to include reference information about a 16-bit CRC in a serial protocol document I was writing. And I knew it wasn’t going to end well.
The last time I looked into CRC algorithms was about five years ago. And the time before that… sometime back in 2004 or 2005? It seems like it comes up periodically, like the seventeen-year locust or sunspots or El Niño,...
Shibboleths: The Perils of Voiceless Sibilant Fricatives, Idiot Lights, and Other Binary-Outcome Tests
AS-SALT, JORDAN — Dr. Reza Al-Faisal once had a job offer from Google to work on cutting-edge voice recognition projects. He turned it down. The 37-year-old Stanford-trained professor of engineering at Al-Balqa’ Applied University now leads a small cadre of graduate students in a government-sponsored program to keep Jordanian society secure from what has now become an overwhelming influx of refugees from the Palestinian-controlled West Bank. “Sometimes they visit relatives...
Modern Embedded Systems Programming: Beyond the RTOS
An RTOS (Real-Time Operating System) is the most universally accepted way of designing and implementing embedded software. It is the most sought after component of any system that outgrows the venerable "superloop". But it is also the design strategy that implies a certain programming paradigm, which leads to particularly brittle designs that often work only by chance. I'm talking about sequential programming based on blocking.
Blocking occurs any time you wait explicitly in-line for...
Racing to Sleep
Today we’re going to talk about low-power design.
Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and a LoRa transceiver. The idea is something like...
Implementation Complexity, Part II: Catastrophe, Dear Liza, and the M Word
In my last post, I talked about the Tower of Babel as a warning against implementation complexity, and I mentioned a number of issues that can occur at the time of design or construction of a project.
The Tower of Babel, Pieter Bruegel the Elder, c. 1563 (from Wikipedia)
Success and throwing it over the wallOK, so let's say that the right people get together into a well-functioning team, and build our Tower of Babel, whether it's the Empire State Building, or the electrical grid, or...
Developing software for a safety-related embedded system for the first time
I spend most of my working life with organisations that develop software for high-reliability, real-time embedded systems. Some of these systems are created in compliance with IEC 61508, ISO 26262, DO-178C or similar international standards.
When working with organisations that are developing software for their first safety-related design, I’m often asked to identify the key issues that distinguish this process from the techniques used to develop “ordinary” embedded software.
...Metal detection: building the detector
IntroductionBefore starting, you may want to read this post describing the BFO stage://www.embeddedrelated.com/showarticle/911.php
I have detailed the implementation of a BFO stage for detecting metal. Now it has been validated on the bench, the next step is to integrate it in a stand alone instrument for testing on the field. A few things have to be done to reach this goal:
- make a PCB for the electronics,
- house the PCB in a box,
- add a power supply,
- make a frame to hold...
Coding Step 4 - Design
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
The last article in this series discussed how to write functional high-level requirements: specifications for what your software is supposed to do. Software design is the other side of the coin....
Data Validity in Embedded Systems
If you take a high-level view of software systems you might say that the overall goal of software is to generate outputs from inputs. It’s a gross simplification of a nuanced and complex field but the truth of the statement is unarguable: data goes in, is manipulated and then is spat out again.That’s what software does. The simplicity of the statement contributes to the joy of Computer Science majors who take an abstract view of everything from software to love but infuriates...
Implementation Complexity, Part I: The Tower of Babel, Gremlins, and The Mythical Man-Month
I thought I'd post a follow-up, in a sense, to an older post about complexity in consumer electronics I wrote a year and a half ago. That was kind of a rant against overly complex user interfaces. I am a huge opponent of unnecessary complexity in almost any kind of interface, whether a user interface or a programming interface or an electrical interface. Interfaces should be clean and simple.
Now, instead of interface complexity, I'll be talking about implementation complexity, with a...
Modern Embedded Systems Programming: Beyond the RTOS
An RTOS (Real-Time Operating System) is the most universally accepted way of designing and implementing embedded software. It is the most sought after component of any system that outgrows the venerable "superloop". But it is also the design strategy that implies a certain programming paradigm, which leads to particularly brittle designs that often work only by chance. I'm talking about sequential programming based on blocking.
Blocking occurs any time you wait explicitly in-line for...
Embedded Programming Video Course Shows How OOP Works Under the Hood
If you'd like to understand how Object-Oriented Programming (OOP) really works under the hood, here is a free video course for you:
OOP part-1: Encapsulation: This first lesson on Object-Oriented Programming (OOP) introduces the concept of Encapsulation, which is the ability to package data and functions together into classes. You'll see how you can emulate Encapsulation in C, what kind of code is generated, and how to debug such code. Next, you will translate the C design into C++ using...
Coding Step 4 - Design
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
The last article in this series discussed how to write functional high-level requirements: specifications for what your software is supposed to do. Software design is the other side of the coin....
Implementation Complexity, Part II: Catastrophe, Dear Liza, and the M Word
In my last post, I talked about the Tower of Babel as a warning against implementation complexity, and I mentioned a number of issues that can occur at the time of design or construction of a project.
The Tower of Babel, Pieter Bruegel the Elder, c. 1563 (from Wikipedia)
Success and throwing it over the wallOK, so let's say that the right people get together into a well-functioning team, and build our Tower of Babel, whether it's the Empire State Building, or the electrical grid, or...
Designing Communication Protocols, Practical Aspects
For most embedded developers always comes the time when they have to make their embedded MCU talk to another system. That other system will be a PC or a different embedded system or a smartphone etc. For the purpose of this article I am assuming that we are in the control of the protocol between the two ends and we don’t have to follow something that is already in place on one side.
So let’s say that we have our embedded MCU, we have implemented and configured the USB stack (or just...
Racing to Sleep
Today we’re going to talk about low-power design.
Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and a LoRa transceiver. The idea is something like...
Efficiency Through the Looking-Glass
If you've ever designed or purchased a power supply, chances are you have had to work with efficiency calculations. I can remember in my beginning electronic circuits course in college, in the last lecture when the professor was talking about switching power converters, and saying how all of a sudden you could take a linear regulator that was 40% efficient and turn it into a switching regulator that was 80% efficient. I think that was the nail in the coffin for any plans I had to pursue a...
UML Statechart tip: Handling errors when entering a state
This is my second post with advice and tips on designing software with UML statecharts. My first entry is here.
It has been nearly 20 years since I first studied UML statecharts. Since that initial exposure (thank you Samek!), I have applied event driven active object statechart designs to numerous projects [3]. Nothing has abated my preference for this pattern in my firmware and embedded software projects. Through the years I have taken note of a handful of common challenges when...
Metal detection: building the detector
IntroductionBefore starting, you may want to read this post describing the BFO stage://www.embeddedrelated.com/showarticle/911.php
I have detailed the implementation of a BFO stage for detecting metal. Now it has been validated on the bench, the next step is to integrate it in a stand alone instrument for testing on the field. A few things have to be done to reach this goal:
- make a PCB for the electronics,
- house the PCB in a box,
- add a power supply,
- make a frame to hold...