
How to Include MathJax Equations in SVG With Less Than 100 Lines of JavaScript!
Today’s short and tangential note is an account of how I dug myself out of Documentation Despair. I’ve been working on some block diagrams. You know, this sort of thing, to describe feedback control systems:
And I had a problem. How do I draw diagrams like this?
I don’t have Visio and I don’t like Visio. I used to like Visio. But then it got Microsofted.
I can use MATLAB and Simulink, which are great for drawing block diagrams. Normally you use them to create a...
First-Order Systems: The Happy Family
Все счастли́вые се́мьи похо́жи друг на дру́га, ка́ждая несчастли́вая семья́ несчастли́ва по-сво́ему.— Лев Николаевич Толстой, Анна Каренина
Happy families are all alike; every unhappy family is unhappy in its own way.— Lev Nicholaevich Tolstoy, Anna Karenina
I was going to write an article about second-order systems, but then realized that it would be...
Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough
Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this series for a while. Fourth installments after a hiatus can bring bad vibes. I mean, look what it did to George Lucas: now we have Star Wars Episode I: The Phantom Menace and
April is Oscilloscope Month: In Which We Discover Agilent Offers Us a Happy Deal and a Sad Name
Last month I wrote that March is Oscilloscope Month, because Agilent had a deal on the MSOX2000 and MSOX3000 series scopes offering higher bandwidth at lower prices. I got an MSOX3034 oscilloscope and saved my company $3500! (Or rather, I didn't save them anything, but I got a 350MHz scope at a 200MHz price.)
The scope included a free 30-day trial for each of the application software modules. I used my 30-day trial for the serial decode + triggering module, to help debug some UART...
How to Analyze a Differential Amplifier
There are a handful of things that you just have to know if you do any decent amount of electronic circuit design work. One of them is a voltage divider. Another is the behavior of an RC filter. I'm not going to explain these two things or even link to a good reference on them — either you already know how they work, or you're smart enough to look it up yourself.
The handful of things also includes some others that are a little more interesting to discuss. One of them is this...
Garden Rakes Revisited: The Hall of Shame
A little while ago, I wrote about what I call the “garden rakes” syndrome in software, where there are little bugs or pitfalls lying around like sloppy garden rakes that no one has put away, and when you use these software programs, instead of zooming around getting things done, you’re either tripping over the garden rakes or carefully trying to avoid them. Either way, you lose focus on what you’re really trying to work on, and that causes a big hit in...
March is Oscilloscope Month — and at Tim Scale!
I got my oscilloscope today.
Maybe that was a bit of an understatement; I'll have to resort to gratuitous typography:
I GOT MY OSCILLOSCOPE TODAY!!!!Those of you who are reading this blog may remember I made a post about two years ago about searching for the right oscilloscope for me. Since then, I changed jobs and have been getting situated in the world of applications engineering, working on motor control projects. I've been gradually working to fill in gaps in the infrastructure...
Bad Hash Functions and Other Stories: Trapped in a Cage of Irresponsibility and Garden Rakes
I was recently using the publish() function in MATLAB to develop some documentation, and I ran into a problem caused by a bad hash function.
In a resource-limited embedded system, you aren't likely to run into hash functions. They have three major applications: cryptography, data integrity, and data structures. In all these cases, hash functions are used to take some type of data, and deterministically boil it down to a fixed-size "fingerprint" or "hash" of the original data, such that...
Efficiency Through the Looking-Glass
If you've ever designed or purchased a power supply, chances are you have had to work with efficiency calculations. I can remember in my beginning electronic circuits course in college, in the last lecture when the professor was talking about switching power converters, and saying how all of a sudden you could take a linear regulator that was 40% efficient and turn it into a switching regulator that was 80% efficient. I think that was the nail in the coffin for any plans I had to pursue a...
Understanding and Preventing Overflow (I Had Too Much to Add Last Night)
Happy Thanksgiving! Maybe the memory of eating too much turkey is fresh in your mind. If so, this would be a good time to talk about overflow.
In the world of floating-point arithmetic, overflow is possible but not particularly common. You can get it when numbers become too large; IEEE double-precision floating-point numbers support a range of just under 21024, and if you go beyond that you have problems:
for k in [10, 100, 1000, 1020, 1023, 1023.9, 1023.9999, 1024]: try: ...Wye Delta Tee Pi: Observations on Three-Terminal Networks
Today I’m going to talk a little bit about three-terminal linear passive networks. These generally come in two flavors, wye and delta.
Why Wye?The town of Why, Arizona has a strange name that comes from the shape of the original road junction of Arizona State Highways 85 and 86, which was shaped like the letter Y. This is no longer the case, because the state highway department reconfigured the intersection
Bad Hash Functions and Other Stories: Trapped in a Cage of Irresponsibility and Garden Rakes
I was recently using the publish() function in MATLAB to develop some documentation, and I ran into a problem caused by a bad hash function.
In a resource-limited embedded system, you aren't likely to run into hash functions. They have three major applications: cryptography, data integrity, and data structures. In all these cases, hash functions are used to take some type of data, and deterministically boil it down to a fixed-size "fingerprint" or "hash" of the original data, such that...
Sheep Bridge: In Praise of Generalists and System Engineers
Today I want to talk about generalists and system engineers: why they’re important and why they’re different from each other.
Specialists and GeneralistsA specialist is someone who has a very deep understanding of a particular subject, and spends much of the time working on aspects of that subject. Few others are capable of doing the specialist’s work. I recently wrote an article on gate drive design (Lost Secrets of the H-Bridge,...
Hot Fun in the Silicon: Thermal Testing with Power Semiconductors
Here's a trick that is useful the next time you do thermal testing with your MOSFETs or IGBTs.
Thermal testing?!
Yes, that's right. It's important to make sure your power transistors don't overheat. In the datasheet, you will find some information that you can use to estimate how hot the junction inside the IC will get.
Let's look at an example. Here's a page from the IRF7739 DirectFET datasheet. I like this datasheet because it has almost all the thermal stuff on one page,...
10 Software Tools You Should Know
Unless you're designing small analog electronic circuits, it's pretty hard these days to get things done in embedded systems design without the help of computers. I thought I'd share a list of software tools that help me get my job done. Most of these are free or inexpensive. Most of them are also for working with software. If you never have to design, read, or edit any software, then you're one of a few people that won't benefit from reading this.
Disclaimer: the "best" software...
Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
10 More (Obscure) Circuit Components You Should Know
The interest in my previous article on obscure but useful electronics parts, "10 Circuit Components You Should Know" was encouraging enough that I thought I would write a followup. So here are another 10:
1. "Ideal Diode" controllers
Load-sharing circuits use diodes tied together at their cathode terminal to take the most positive voltage among the sources and connect it to a load. Works great: you have a DC/DC power supply, a battery, and a solar cell, and it will use whichever output is...
March is Oscilloscope Month — and at Tim Scale!
I got my oscilloscope today.
Maybe that was a bit of an understatement; I'll have to resort to gratuitous typography:
I GOT MY OSCILLOSCOPE TODAY!!!!Those of you who are reading this blog may remember I made a post about two years ago about searching for the right oscilloscope for me. Since then, I changed jobs and have been getting situated in the world of applications engineering, working on motor control projects. I've been gradually working to fill in gaps in the infrastructure...
A Second Look at Slew Rate Limiters
I recently had to pick a slew rate for a current waveform, and I got this feeling of déjà vu… hadn’t I gone through this effort already? So I looked, and lo and behold, way back in 2014 I wrote an article titled Slew Rate Limiters: Nonlinear and Proud of It! where I explored the effects of two types of slew rate limiters, one feedforward and one feedback, given a particular slew rate \( R \).
Here was one figure I published at the time:
This...
Have You Ever Seen an Ideal Op-Amp?
Somewhere, along with unicorns and the Loch Ness Monster, lies a small colony of ideal op-amps. Op-amp is short for operational amplifier, and we start our education on them by learning about these mythical beasts, which have the following properties:
- Infinite gain
- Infinite input impedance
- Zero output impedance
And on top of it all, they will do whatever it takes to change their output in order to make their two inputs equal.
But they don't exist. Real op-amps have...
Linear Feedback Shift Registers for the Uninitiated, Part V: Difficult Discrete Logarithms and Pollard's Kangaroo Method
Last time we talked about discrete logarithms which are easy when the group in question has an order which is a smooth number, namely the product of small prime factors. Just as a reminder, the goal here is to find \( k \) if you are given some finite multiplicative group (or a finite field, since it has a multiplicative group) with elements \( y \) and \( g \), and you know you can express \( y = g^k \) for some unknown integer \( k \). The value \( k \) is the discrete logarithm of \( y \)...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 5)
In this article we’re going to take a look at cycle time, queues, and inventory. Cycle time is a manufacturing term — for anything, not just semiconductors — meaning how long it takes for an individual product to make its way through a manufacturing process, from start to finish. We’re going to try to understand how long it takes to manufacture semiconductors. In particular, we’re going to try to answer these questions:
- How long does it take...
Thoughts on Starting a New Career
I recently completed a 16-year stint at an engineering company. I started there fresh out of college in June 1996. This June I just started a new career as an applications engineer in the area of motor drives at Microchip Technology in Chandler, Arizona. The experience I had in switching jobs was a very enlightening one for me, and has given me an opportunity to reflect on my career. I want to share some of that reflection with you.
Disclaimer: the opinions expressed in this and other blogs...
Modulation Alternatives for the Software Engineer
Before I get to talking about modulation, here's a brief diversion.
A long time ago -- 1993, to be precise -- I took my first course on digital electronics and processors. In that class, we had to buy a copy of the TTL Data Book* from Texas Instruments.
If you have any experience in digital logic design you probably know that TTL stands for Transistor-transistor logic (thereby making the phrase "TTL Logic" an example of RAS...
Short Takes (EE Shanty): What shall we do with a zero-ohm resistor?
In circuit board design you often need flexibility. It can cost hundreds or thousands of dollars to respin a circuit board, so I need flexibility for two main reasons:
- sometimes it's important to be able to use one circuit board design to serve more than one purpose
- risk reduction: I want to give myself the option to add in or leave out certain things when I'm not 100% sure I'll need them.
And so we have jumpers and DIP switches and zero-ohm resistors:
Jumpers and...
Linear Feedback Shift Registers for the Uninitiated, Part XI: Pseudorandom Number Generation
Last time we looked at the use of LFSRs in counters and position encoders.
This time we’re going to look at pseudorandom number generation, and why you may — or may not — want to use LFSRs for this purpose.
But first — an aside:
Science Fair 1983When I was in fourth grade, my father bought a Timex/Sinclair 1000. This was one of several personal computers introduced in 1982, along with the Commodore 64. The...
Implementation Complexity, Part I: The Tower of Babel, Gremlins, and The Mythical Man-Month
I thought I'd post a follow-up, in a sense, to an older post about complexity in consumer electronics I wrote a year and a half ago. That was kind of a rant against overly complex user interfaces. I am a huge opponent of unnecessary complexity in almost any kind of interface, whether a user interface or a programming interface or an electrical interface. Interfaces should be clean and simple.
Now, instead of interface complexity, I'll be talking about implementation complexity, with a...
Linear Regression with Evenly-Spaced Abscissae
What a boring title. I wish I could come up with something snazzier. One word I learned today is studentization, which is just the normalization of errors in a curve-fitting exercise by the sample standard deviation (e.g. point \( x_i \) is \( 0.3\hat{\sigma} \) from the best-fit linear curve, so \( \frac{x_i - \hat{x}_i}{\hat{\sigma}} = 0.3 \)) — Studentize me! would have been nice, but I couldn’t work it into the topic for today. Oh well.
I needed a little break from...
Linear Feedback Shift Registers for the Uninitiated, Part III: Multiplicative Inverse, and Blankinship's Algorithm
Last time we talked about basic arithmetic operations in the finite field \( GF(2)[x]/p(x) \) — addition, multiplication, raising to a power, shift-left and shift-right — as well as how to determine whether a polynomial \( p(x) \) is primitive. If a polynomial \( p(x) \) is primitive, it can be used to define an LFSR with coefficients that correspond to the 1 terms in \( p(x) \), that has maximal length of \( 2^N-1 \), covering all bit patterns except the all-zero...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 4)
Today we’re going to look at what’s been going on this past year in the chip shortage, particularly in the automotive markets. I’m going to share some recent events and statements that may shed some light on what’s been happening.
In Part Three we went through a deep dive on some aspects of Moore’s Law, the semiconductor foundries, and semiconductor economics, and we looked at the game Supply Chain Idle. We touched on a couple of important points about the...
