Python Code from My Articles Now Online in IPython Notebooks

Jason Sachs May 1, 2015

Ever since I started using IPython Notebooks to write these articles, I’ve been wanting to publish them in a form such that you can freely use my Python code. One of you (maredsous10) wanted this access as well.

Well, I finally bit the bullet and automated a script that will extract the Python code and create standalone notebooks, that are available publicly under the Apache license on my bitbucket account:

This also means they...

Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Jason Sachs April 27, 201512 comments

Other articles in this series:

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...

Ten Little Algorithms, Part 1: Russian Peasant Multiplication

Jason Sachs March 21, 20155 comments

This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.

Other articles in this series:

  • Part 1:

Two Capacitors Are Better Than One

Jason Sachs February 15, 20155 comments

I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:

And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.

Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?


My Love-Hate Relationship with Stack Overflow: Arthur S., Arthur T., and the Soup Nazi

Jason Sachs February 15, 201551 comments

Warning: In the interest of maintaining a coherent stream of consciousness, I’m lowering the setting on my profanity filter for this post. Just wanted to let you know ahead of time.

I’ve been a user of Stack Overflow since December of 2008. And I say “user” both in the software sense, and in the drug-addict sense. I’m Jason S, user #44330, and I’m a programming addict. (Hi, Jason S.) The Gravatar, in case you were wondering, is a screen...

Voltage Drops Are Falling on My Head: Operating Points, Linearization, Temperature Coefficients, and Thermal Runaway

Jason Sachs January 19, 2015

Today’s topic was originally going to be called “Small Changes Caused by Various Things”, because I couldn’t think of a better title. Then I changed the title. This one’s not much better, though. Sorry.

What I had in mind was the Shockley diode equation and some other vaguely related subjects.

My Teachers Lied to Me

My introductory circuits class in college included a section about diodes and transistors.

The ideal diode equation is...

Important Programming Concepts (Even on Embedded Systems) Part V: State Machines

Jason Sachs January 5, 20158 comments

Other articles in this series:

Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.

Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...

Optimizing Optoisolators, and Other Stories of Making Do With Less

Jason Sachs December 14, 20144 comments

It’s been a few months since I’ve rolled up my sleeves here and dug into some good old circuit design issues. I started out with circuit design articles, and I’ve missed it.

Today’s topic will be showing you some tricks for how to get more performance out of an optoisolator. These devices — and I’m tempted to be lazy and call them “optos”, but that sounds more like a cereal with Greek yogurt-covered raisins — are essentially just an LED...

Book Review: "Turing's Cathedral"

Jason Sachs November 20, 20146 comments

My library had Turing’s Cathedral: The Origins of the Digital Universe by George Dyson on its new acquisitions shelf, so I read it. I’d recommend the book to anyone interested in the history of computing.

Turing’s Cathedral primarly covers the period in early computing from 1940-1958, and bridges a gap between a few other popular books: on the historic side, between Richard Rhodes’s

Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons

Jason Sachs November 11, 20142 comments

Other articles in this series:

Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but

Slew Rate Limiters: Nonlinear and Proud of It!

Jason Sachs October 6, 2014

I first learned about slew rate limits when I was in college. Usually the subject comes up when talking about the nonideal behavior of op-amps. In order for the op-amp output to swing up and down quickly, it has to charge up an internal capacitor with a transistor circuit that’s limited in its current capability. So the slew rate limit \( \frac{dV}{dt} = \frac{I_{\rm max}}{C} \). And as long as the amplitude and frequency aren’t too high, you won’t notice it. But try to...

Have You Ever Seen an Ideal Op-Amp?

Jason Sachs April 30, 2012

Somewhere, along with unicorns and the Loch Ness Monster, lies a small colony of ideal op-amps. Op-amp is short for operational amplifier, and we start our education on them by learning about these mythical beasts, which have the following properties:

  • Infinite gain
  • Infinite input impedance
  • Zero output impedance

And on top of it all, they will do whatever it takes to change their output in order to make their two inputs equal.

But they don't exist. Real op-amps have...

You Will Make Mistakes

Jason Sachs September 28, 20141 comment
</scorpion>: FAIL

Anyone out there see the TV pilot of Scorpion? Genius hacker squad meets Homeland Security in a fast-paced thriller to save hundreds of airplanes from crashing after LAX air traffic control software upgrade fails and they didn’t save a backup of the old version (ZOMG!!!) so thousands of people are going to die because the planes… well, they just can’t land! They just can’t. Even if the weather is sunny and calm and there could quite possibly...

Oscilloscope review: Hameg HMO2024

Jason Sachs March 28, 20133 comments

Last year I wrote about some of the key characteristics of oscilloscopes that are important to me for working with embedded microcontrollers. In that blog entry I rated the Agilent MSOX3024A 4-channel 16-digital-input oscilloscope highly.

Since then I have moved to a different career, and I am again on the lookout for an oscilloscope. I still consider the Agilent MSOX3024A the best choice for a...

Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Jason Sachs November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...

Stairway to Thévenin

Jason Sachs December 31, 2011

This article was inspired by a recent post on reddit asking for help on Thévenin and Norton equivalent circuits.

(With apologies to Mr. Thévenin, the rest of the e's that follow will remain unaccented.)

I still remember my introductory circuits class on the subject, roughly as follows:

(NOTE: Do not get scared of what you see in the rest of this section. We're going to point out the traditional approach for teaching linear equivalent circuits first. If you have...

Someday We’ll Find It, The Kelvin Connection

Jason Sachs July 28, 20142 comments

You’d think it wouldn’t be too hard to measure electrical resistance accurately. And it’s really not, at least according to you just follow these easy steps:

  • Choose the item whose resistance you wish to measure.
  • Plug the probes into the correct test sockets.
  • Turn on the multimeter.
  • Select the best testing range.
  • Touch the multimeter probes to the item you wish to measure.
  • Set the multimeter to a high voltage range after finishing the...

Lessons Learned from Embedded Code Reviews (Including Some Surprises)

Jason Sachs August 16, 20151 comment

My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.

My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “

Complexity in Consumer Electronics Considered Harmful

Jason Sachs October 1, 20111 comment

I recently returned from a visit to my grandmother, who lives in an assisted living community, and got to observe both her and my frustration first-hand with a new TV. This was a Vizio flatscreen TV that was fairly easy to set up, and the picture quality was good. But here's what the remote control looks like:

You will note:

  • the small lettering (the number buttons are just under 1/4 inch in diameter)
  • a typeface chosen for marketing purposes (matching Vizio's "futuristic" corporate...

Padé Delay is Okay Today

Jason Sachs March 1, 20164 comments

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...