## Oh Robot My Robot

Oh Robot! My Robot! You’ve broken off your nose! Your head is spinning round and round, your eye no longer glows, Each program after program tapped your golden memory, You used to have 12K, now there is none that I can see, Under smoldering antennae, Over long forgotten feet, My sister used your last part: The chip she tried to eat.

Oh Robot, My Robot, the remote controls—they call, The call—for...

## Important Programming Concepts (Even on Embedded Systems) Part VI : Abstraction

Earlier articles:

- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines

We have come to the last part of the Important Programming Concepts series, on abstraction. I thought I might also talk about why there isn’t a Part VII, but decided it would distract from this article — so if you want to know the reason, along with what’s next,

## Ten Little Algorithms, Part 3: Welford's Method (and Friends)

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Last time we talked about a low-pass filter, and we saw that a one-line...

## Python Code from My Articles Now Online in IPython Notebooks

Ever since I started using IPython Notebooks to write these articles, I’ve been wanting to publish them in a form such that you can freely use my Python code. One of you (maredsous10) wanted this access as well.

Well, I finally bit the bullet and automated a script that will extract the Python code and create standalone notebooks, that are available publicly under the Apache license on my bitbucket account: https://bitbucket.org/jason_s/embedded-blog-public

This also means they...

## Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...

## Ten Little Algorithms, Part 1: Russian Peasant Multiplication

This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.

Other articles in this series:

- Part 1:

## Two Capacitors Are Better Than One

I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:

And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.

Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?

I...

## My Love-Hate Relationship with Stack Overflow: Arthur S., Arthur T., and the Soup Nazi

Warning: In the interest of maintaining a coherent stream of consciousness, I’m lowering the setting on my profanity filter for this post. Just wanted to let you know ahead of time.

I’ve been a user of Stack Overflow since December of 2008. And I say “user” both in the software sense, and in the drug-addict sense. I’m Jason S, user #44330, and I’m a programming addict. (Hi, Jason S.) The Gravatar, in case you were wondering, is a screen...

## Voltage Drops Are Falling on My Head: Operating Points, Linearization, Temperature Coefficients, and Thermal Runaway

Today’s topic was originally going to be called “Small Changes Caused by Various Things”, because I couldn’t think of a better title. Then I changed the title. This one’s not much better, though. Sorry.

What I had in mind was the Shockley diode equation and some other vaguely related subjects.

My Teachers Lied to MeMy introductory circuits class in college included a section about diodes and transistors.

The ideal diode equation is...

## Important Programming Concepts (Even on Embedded Systems) Part V: State Machines

Other articles in this series:

- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part VI: Abstraction

Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.

Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...

## Second-Order Systems, Part I: Boing!!

I’ve already written about the unexciting (but useful) 1st-order system, and about slew-rate limiting. So now it’s time to cover second-order systems.

The most common second-order systems are RLC circuits and spring-mass-damper systems.

Spring-mass-damper systems are fairly common; you’ve seen these before, whether you realize it or not. One household example of these is the spring doorstop (BOING!!):

(For what it’s worth: the spring...

## Which MOSFET topology?

A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:

From left to right, these are:

High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...## Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer

The last four articles were on algorithms used to compute with finite fields and shift registers:

- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output

Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.

## Fluxions for Fun and Profit: Euler, Trapezoidal, Verlet, or Runge-Kutta?

Today we're going to take another diversion from embedded systems, and into the world of differential equations, modeling, and computer simulation.

DON'T PANIC!First of all, just pretend I didn't bring up anything complicated. We're exposed to the effects of differential equations every day, whether we realize it or not. Your car speedometer and odometer are related by a differential equation, and whether you like math or not, you probably have some comprehension of what's going on: you...

## First-Order Systems: The Happy Family

Все счастли́вые се́мьи похо́жи друг на дру́га, ка́ждая несчастли́вая семья́ несчастли́ва по-сво́ему.— Лев Николаевич Толстой, Анна Каренина

Happy families are all alike; every unhappy family is unhappy in its own way.— Lev Nicholaevich Tolstoy, Anna Karenina

I was going to write an article about second-order systems, but then realized that it would be...

## Linear Feedback Shift Registers for the Uninitiated, Part VI: Sing Along with the Berlekamp-Massey Algorithm

The last two articles were on discrete logarithms in finite fields — in practical terms, how to take the state \( S \) of an LFSR and its characteristic polynomial \( p(x) \) and figure out how many shift steps are required to go from the state 000...001 to \( S \). If we consider \( S \) as a polynomial bit vector such that \( S = x^k \bmod p(x) \), then this is equivalent to the task of figuring out \( k \) from \( S \) and \( p(x) \).

This time we’re tackling something...

## R1C1R2C2: The Two-Pole Passive RC Filter

I keep running into this circuit every year or two, and need to do the same old calculations, which are kind of tiring. So I figured I’d just write up an article and then I can look it up the next time.

This is a two-pole passive RC filter. Doesn’t work as well as an LC filter or an active filter, but it is cheap. We’re going to find out a couple of things about its transfer function.

First let’s find out the transfer function of this circuit:

Not very...

## How to Include MathJax Equations in SVG With Less Than 100 Lines of JavaScript!

Today’s short and tangential note is an account of how I dug myself out of Documentation Despair. I’ve been working on some block diagrams. You know, this sort of thing, to describe feedback control systems:

And I had a problem. How do I draw diagrams like this?

I don’t have Visio and I don’t like Visio. I used to like Visio. But then it got Microsofted.

I can use MATLAB and Simulink, which are great for drawing block diagrams. Normally you use them to create a...

## Ten Little Algorithms, Part 4: Topological Sort

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...

## Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...

## First-Order Systems: The Happy Family

Все счастли́вые се́мьи похо́жи друг на дру́га, ка́ждая несчастли́вая семья́ несчастли́ва по-сво́ему.— Лев Николаевич Толстой, Анна Каренина

Happy families are all alike; every unhappy family is unhappy in its own way.— Lev Nicholaevich Tolstoy, Anna Karenina

I was going to write an article about second-order systems, but then realized that it would be...

## Important Programming Concepts (Even on Embedded Systems) Part III: Volatility

1vol·a·tile adjective \ˈvä-lə-təl, especially British -ˌtī(-ə)l\ : likely to change in a very sudden or extreme way : having or showing extreme or sudden changes of emotion : likely to become dangerous or out of control

— Merriam-Webster Online Dictionary

Other articles in this series:

## Real-time clocks: Does anybody really know what time it is?

We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...

## Bad Hash Functions and Other Stories: Trapped in a Cage of Irresponsibility and Garden Rakes

I was recently using the publish() function in MATLAB to develop some documentation, and I ran into a problem caused by a bad hash function.

In a resource-limited embedded system, you aren't likely to run into hash functions. They have three major applications: cryptography, data integrity, and data structures. In all these cases, hash functions are used to take some type of data, and deterministically boil it down to a fixed-size "fingerprint" or "hash" of the original data, such that...

## Padé Delay is Okay Today

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...

## Someday We’ll Find It, The Kelvin Connection

You’d think it wouldn’t be too hard to measure electrical resistance accurately. And it’s really not, at least according to wikiHow.com: you just follow these easy steps:

- Choose the item whose resistance you wish to measure.
- Plug the probes into the correct test sockets.
- Turn on the multimeter.
- Select the best testing range.
- Touch the multimeter probes to the item you wish to measure.
- Set the multimeter to a high voltage range after finishing the...

## Linear Feedback Shift Registers for the Uninitiated, Part I: Ex-Pralite Monks and Finite Fields

Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.

— Évariste Galois, May 29, 1832

I was going to call this short series of articles “LFSRs for Dummies”, but thought better of it. What is a linear feedback shift register? If you want the short answer, the Wikipedia article is a decent introduction. But these articles are aimed at those of you who want a little bit deeper mathematical understanding,...

## Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 6: Green’s Theorem and Swept-Area Detection

Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of...

## Donald Knuth Is the Root of All Premature Optimization

This article is about something profound that a brilliant young professor at Stanford wrote nearly 45 years ago, and now we’re all stuck with it.

TL;DRThe idea, basically, is that even though optimization of computer software to execute faster is a noble goal, with tangible benefits, this costs time and effort up front, and therefore the decision to do so should not be made on whims and intuition, but instead should be made after some kind of analysis to show that it has net...

## Have You Ever Seen an Ideal Op-Amp?

Somewhere, along with unicorns and the Loch Ness Monster, lies a small colony of ideal op-amps. Op-amp is short for operational amplifier, and we start our education on them by learning about these mythical beasts, which have the following properties:

- Infinite gain
- Infinite input impedance
- Zero output impedance

And on top of it all, they will do whatever it takes to change their output in order to make their two inputs equal.

But they don't exist. Real op-amps have...