Linear Feedback Shift Registers for the Uninitiated, Part IX: Decimation, Trace Parity, and Cyclotomic Cosets

Jason Sachs December 3, 2017

Last time we looked at matrix methods and how they can be used to analyze two important aspects of LFSRs:

  • time shifts
  • state recovery from LFSR output

In both cases we were able to use a finite field or bitwise approach to arrive at the same result as a matrix-based approach. The matrix approach is more expensive in terms of execution time and memory storage, but in some cases is conceptually simpler.

This article will be covering some concepts that are useful for studying the...


Linear Feedback Shift Registers for the Uninitiated, Part VIII: Matrix Methods and State Recovery

Jason Sachs November 21, 2017

Last time we looked at a dsPIC implementation of LFSR updates. Now we’re going to go back to basics and look at some matrix methods, which is the third approach to represent LFSRs that I mentioned in Part I. And we’re going to explore the problem of converting from LFSR output to LFSR state.

Matrices: Beloved Historical Dregs

Elwyn Berlekamp’s 1966 paper Non-Binary BCH Encoding covers some work on


Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer

Jason Sachs November 13, 2017

The last four articles were on algorithms used to compute with finite fields and shift registers:

Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.


Lazy Properties in Python Using Descriptors

Jason Sachs November 7, 2017

This is a bit of a side tangent from my normal at-least-vaguely-embedded-related articles, but I wanted to share a moment of enlightenment I had recently about descriptors in Python. The easiest way to explain a descriptor is a way to outsource attribute lookup and modification.

Python has a bunch of “magic” methods that are hooks into various object-oriented mechanisms that let you do all sorts of ridiculously clever things. Whether or not they’re a good idea is another...


Linear Feedback Shift Registers for the Uninitiated, Part VI: Sing Along with the Berlekamp-Massey Algorithm

Jason Sachs October 18, 2017

The last two articles were on discrete logarithms in finite fields — in practical terms, how to take the state \( S \) of an LFSR and its characteristic polynomial \( p(x) \) and figure out how many shift steps are required to go from the state 000...001 to \( S \). If we consider \( S \) as a polynomial bit vector such that \( S = x^k \bmod p(x) \), then this is equivalent to the task of figuring out \( k \) from \( S \) and \( p(x) \).

This time we’re tackling something...


Linear Feedback Shift Registers for the Uninitiated, Part V: Difficult Discrete Logarithms and Pollard's Kangaroo Method

Jason Sachs October 1, 2017

Last time we talked about discrete logarithms which are easy when the group in question has an order which is a smooth number, namely the product of small prime factors. Just as a reminder, the goal here is to find \( k \) if you are given some finite multiplicative group (or a finite field, since it has a multiplicative group) with elements \( y \) and \( g \), and you know you can express \( y = g^k \) for some unknown integer \( k \). The value \( k \) is the discrete logarithm of \( y \)...


Linear Feedback Shift Registers for the Uninitiated, Part IV: Easy Discrete Logarithms and the Silver-Pohlig-Hellman Algorithm

Jason Sachs September 16, 20174 comments

Last time we talked about the multiplicative inverse in finite fields, which is rather boring and mundane, and has an easy solution with Blankinship’s algorithm.

Discrete logarithms, on the other hand, are much more interesting, and this article covers only the tip of the iceberg.

What is a Discrete Logarithm, Anyway?

Regular logarithms are something that you’re probably familiar with: let’s say you have some number \( y = b^x \) and you know \( y \) and \( b \) but...


Linear Feedback Shift Registers for the Uninitiated, Part III: Multiplicative Inverse, and Blankinship's Algorithm

Jason Sachs September 9, 2017

Last time we talked about basic arithmetic operations in the finite field \( GF(2)[x]/p(x) \) — addition, multiplication, raising to a power, shift-left and shift-right — as well as how to determine whether a polynomial \( p(x) \) is primitive. If a polynomial \( p(x) \) is primitive, it can be used to define an LFSR with coefficients that correspond to the 1 terms in \( p(x) \), that has maximal length of \( 2^N-1 \), covering all bit patterns except the all-zero...


Linear Feedback Shift Registers for the Uninitiated, Part II: libgf2 and Primitive Polynomials

Jason Sachs July 17, 2017

Last time, we looked at the basics of LFSRs and finite fields formed by the quotient ring \( GF(2)[x]/p(x) \).

LFSRs can be described by a list of binary coefficients, sometimes referred as the polynomial, since they correspond directly to the characteristic polynomial of the quotient ring.

Today we’re going to look at how to perform certain practical calculations in these finite fields. I maintain a Python library on bitbucket called...


Linear Feedback Shift Registers for the Uninitiated, Part I: Ex-Pralite Monks and Finite Fields

Jason Sachs July 3, 20175 comments

Later there will be, I hope, some people who will find it to their advantage to decipher all this mess.

— Évariste Galois, May 29, 1832

I was going to call this short series of articles “LFSRs for Dummies”, but thought better of it. What is a linear feedback shift register? If you want the short answer, the Wikipedia article is a decent introduction. But these articles are aimed at those of you who want a little bit deeper mathematical understanding,...


Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough

Jason Sachs April 29, 20147 comments

Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this series for a while. Fourth installments after a hiatus can bring bad vibes. I mean, look what it did to George Lucas: now we have Star Wars Episode I: The Phantom Menace and


Which MOSFET topology?

Jason Sachs September 1, 20119 comments

A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:

From left to right, these are:

High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...

How to Build a Fixed-Point PI Controller That Just Works: Part II

Jason Sachs March 24, 20122 comments

In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:

  • various forms and whether to use the canonical form for z-transforms (don't do it!)
  • order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
  • saturation and anti-windup

In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...


Two Capacitors Are Better Than One

Jason Sachs February 15, 20155 comments

I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:

And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.

Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?

I...


Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons

Jason Sachs November 11, 20142 comments

Other articles in this series:

Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but


Lost Secrets of the H-Bridge, Part III: Practical Issues of Inductor and Capacitor Ripple Current

Jason Sachs August 24, 20133 comments

We've been analyzing the ripple current in an H-bridge, both in an inductive load and the DC link capacitor. Here's a really quick recap; if you want to get into more details, go back and read part I and part II until you've got equations coming out of your ears. I promise there will be a lot less grungy math in this post. So let's get most of it out of the way:

Switches QAH and QAL are being turned on and off with pulse-width modulation (PWM), to produce an average voltage DaVdc on...


Byte and Switch (Part 2)

Jason Sachs May 7, 20118 comments

In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:

We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...


Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Jason Sachs November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...


Ten Little Algorithms, Part 4: Topological Sort

Jason Sachs July 5, 20151 comment

Other articles in this series:

Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...


Important Programming Concepts (Even on Embedded Systems) Part II: Immutability

Jason Sachs September 14, 2014

Other articles in this series:

This article will discuss immutability, and some of its variations in the topic of functional programming.

There are a whole series of benefits to using program variables that… well, that aren’t actually variable, but instead are immutable. The impact of...