## Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 6: Green’s Theorem and Swept-Area Detection

Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of...

## The Dilemma of Unwritten Requirements

You will probably hear the word “requirements” at least 793 times in your engineering career, mostly in the context of how important it is, in any project, to agree upon clear requirements before committing to (and hastily proceeding towards) a deadline. Some of those times you may actually follow that advice. Other times it’s just talk, like how you should “wear sunscreen when spending time outdoors” and “eat a diet low in saturated fats and...

## Trust, but Verify: Examining the Output of an Embedded Compiler

I work with motor control firmware on the Microchip dsPIC33 series of microcontrollers. The vast majority of that firmware is written in C, with only a few percent in assembly. And I got to thinking recently: I programmed in C and C++ on an Intel PC from roughly 1991 to 2009. But I don’t remember ever working with x86 assembly code. Not once. Not even reading it. Which seems odd. I do that all the time with embedded firmware. And I think you should too. Before I say why, here are...

## How to Read a Power MOSFET Datasheet

One of my pet peeves is when my fellow engineers misinterpret component datasheets. This happened a few times recently in separate instances, all involving power MOSFETs. So it’s time for me to get on my soapbox. Listen up!

I was going to post an article on how to read component datasheets in general. But MOSFETs are a good place to start, and are a little more specific. I’m not the first person to write something about how to read datasheets; here are some other good...

## Lessons Learned from Embedded Code Reviews (Including Some Surprises)

My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.

My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “

## Ten Little Algorithms, Part 4: Topological Sort

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...

## Oh Robot My Robot

Oh Robot! My Robot! You’ve broken off your nose! Your head is spinning round and round, your eye no longer glows, Each program after program tapped your golden memory, You used to have 12K, now there is none that I can see, Under smoldering antennae, Over long forgotten feet, My sister used your last part: The chip she tried to eat.

Oh Robot, My Robot, the remote controls—they call, The call—for...

## Important Programming Concepts (Even on Embedded Systems) Part VI : Abstraction

Earlier articles:

- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines

We have come to the last part of the Important Programming Concepts series, on abstraction. I thought I might also talk about why there isn’t a Part VII, but decided it would distract from this article — so if you want to know the reason, along with what’s next,

## Ten Little Algorithms, Part 3: Welford's Method (and Friends)

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Last time we talked about a low-pass filter, and we saw that a one-line...

## Python Code from My Articles Now Online in IPython Notebooks

Ever since I started using IPython Notebooks to write these articles, I’ve been wanting to publish them in a form such that you can freely use my Python code. One of you (maredsous10) wanted this access as well.

Well, I finally bit the bullet and automated a script that will extract the Python code and create standalone notebooks, that are available publicly under the Apache license on my bitbucket account: https://bitbucket.org/jason_s/embedded-blog-public

This also means they...

## Lessons Learned from Embedded Code Reviews (Including Some Surprises)

My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.

My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “

## The Least Interesting Circuit in the World

It does nothing, most of the time.

It cannot compute pi. It won’t oscillate. It doesn’t light up.

Often it makes other circuits stop working.

It is… the least interesting circuit in the world.

What is it?

About 25 years ago, I took a digital computer architecture course, and we were each given use of an ugly briefcase containing a bunch of solderless breadboards and a power supply and switches and LEDs — and a bunch of

## Linear Feedback Shift Registers for the Uninitiated, Part VIII: Matrix Methods and State Recovery

Last time we looked at a dsPIC implementation of LFSR updates. Now we’re going to go back to basics and look at some matrix methods, which is the third approach to represent LFSRs that I mentioned in Part I. And we’re going to explore the problem of converting from LFSR output to LFSR state.

Matrices: Beloved Historical DregsElwyn Berlekamp’s 1966 paper Non-Binary BCH Encoding covers some work on

## 10 Circuit Components You Should Know

Chefs have their miscellaneous ingredients, like condensed milk, cream of tartar, and xanthan gum. As engineers, we too have quite our pick of circuits, and a good circuit designer should know what's out there. Not just the bread and butter ingredients like resistors, capacitors, op-amps, and comparators, but the miscellaneous "gadget" components as well.

Here are ten circuit components you may not have heard of, but which are occasionally quite useful.

1. Multifunction gate (

## Lost Secrets of the H-Bridge, Part II: Ripple Current in the DC Link Capacitor

In my last post, I talked about ripple current in inductive loads.

One of the assumptions we made was that the DC link was, in fact, a DC voltage source. In reality that's an approximation; no DC voltage source is perfect, and current flow will alter the DC link voltage. To analyze this, we need to go back and look at how much current actually is being drawn from the DC link. Below is an example. This is the same kind of graph as last time, except we added two...

## Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals

Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:

- the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
- the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream

The unusually-good correlation properties...

## Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation

Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...

## Bad Hash Functions and Other Stories: Trapped in a Cage of Irresponsibility and Garden Rakes

I was recently using the publish() function in MATLAB to develop some documentation, and I ran into a problem caused by a bad hash function.

In a resource-limited embedded system, you aren't likely to run into hash functions. They have three major applications: cryptography, data integrity, and data structures. In all these cases, hash functions are used to take some type of data, and deterministically boil it down to a fixed-size "fingerprint" or "hash" of the original data, such that...

## Padé Delay is Okay Today

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...

## Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...

## Real-time clocks: Does anybody really know what time it is?

We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...

## Important Programming Concepts (Even on Embedded Systems) Part III: Volatility

1vol·a·tile adjective \ˈvä-lə-təl, especially British -ˌtī(-ə)l\ : likely to change in a very sudden or extreme way : having or showing extreme or sudden changes of emotion : likely to become dangerous or out of control

— Merriam-Webster Online Dictionary

Other articles in this series:

## 10 Items of Test Equipment You Should Know

When life gets rough and a circuit board is letting you down, it’s time to turn to test equipment. The obvious ones are multimeters and oscilloscopes and power supplies. But you know about those already, right?

Here are some you may not have heard of:

Non-contact current sensors. Oscilloscope probes measure voltage. When you need to measure current, you need a different approach. Especially at high voltages, where maintaining galvanic isolation is important for safety. The usual...## Someday We’ll Find It, The Kelvin Connection

You’d think it wouldn’t be too hard to measure electrical resistance accurately. And it’s really not, at least according to wikiHow.com: you just follow these easy steps:

- Choose the item whose resistance you wish to measure.
- Plug the probes into the correct test sockets.
- Turn on the multimeter.
- Select the best testing range.
- Touch the multimeter probes to the item you wish to measure.
- Set the multimeter to a high voltage range after finishing the...

## Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...

## How to Include MathJax Equations in SVG With Less Than 100 Lines of JavaScript!

Today’s short and tangential note is an account of how I dug myself out of Documentation Despair. I’ve been working on some block diagrams. You know, this sort of thing, to describe feedback control systems:

And I had a problem. How do I draw diagrams like this?

I don’t have Visio and I don’t like Visio. I used to like Visio. But then it got Microsofted.

I can use MATLAB and Simulink, which are great for drawing block diagrams. Normally you use them to create a...

## Fluxions for Fun and Profit: Euler, Trapezoidal, Verlet, or Runge-Kutta?

Today we're going to take another diversion from embedded systems, and into the world of differential equations, modeling, and computer simulation.

DON'T PANIC!First of all, just pretend I didn't bring up anything complicated. We're exposed to the effects of differential equations every day, whether we realize it or not. Your car speedometer and odometer are related by a differential equation, and whether you like math or not, you probably have some comprehension of what's going on: you...

## Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation

Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...

## Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer

The last four articles were on algorithms used to compute with finite fields and shift registers:

- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output

Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.

## Lost Secrets of the H-Bridge, Part II: Ripple Current in the DC Link Capacitor

In my last post, I talked about ripple current in inductive loads.

One of the assumptions we made was that the DC link was, in fact, a DC voltage source. In reality that's an approximation; no DC voltage source is perfect, and current flow will alter the DC link voltage. To analyze this, we need to go back and look at how much current actually is being drawn from the DC link. Below is an example. This is the same kind of graph as last time, except we added two...