
Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation
Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...
R1C1R2C2: The Two-Pole Passive RC Filter
I keep running into this circuit every year or two, and need to do the same old calculations, which are kind of tiring. So I figured I’d just write up an article and then I can look it up the next time.
This is a two-pole passive RC filter. Doesn’t work as well as an LC filter or an active filter, but it is cheap. We’re going to find out a couple of things about its transfer function.
First let’s find out the transfer function of this circuit:
Not very...
Linear Feedback Shift Registers for the Uninitiated, Part XVII: Reverse-Engineering the CRC
Last time, we continued a discussion about error detection and correction by covering Reed-Solomon encoding. I was going to move on to another topic, but then there was this post on Reddit asking how to determine unknown CRC parameters:
I am seeking to reverse engineer an 8-bit CRC. I don’t know the generator code that’s used, but can lay my hands on any number of output sequences given an input sequence.
This is something I call the “unknown oracle”...
Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...
Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction
Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.
This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.
Ernie, You Have a Banana in Your EarI have had a really really tough time writing this article. I like the...
Linear Regression with Evenly-Spaced Abscissae
What a boring title. I wish I could come up with something snazzier. One word I learned today is studentization, which is just the normalization of errors in a curve-fitting exercise by the sample standard deviation (e.g. point \( x_i \) is \( 0.3\hat{\sigma} \) from the best-fit linear curve, so \( \frac{x_i - \hat{x}_i}{\hat{\sigma}} = 0.3 \)) — Studentize me! would have been nice, but I couldn’t work it into the topic for today. Oh well.
I needed a little break from...
Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes
Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.
This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...
Linear Feedback Shift Registers for the Uninitiated, Part XIII: System Identification
Last time we looked at spread-spectrum techniques using the output bit sequence of an LFSR as a pseudorandom bit sequence (PRBS). The main benefit we explored was increasing signal-to-noise ratio (SNR) relative to other disturbance signals in a communication system.
This time we’re going to use a PRBS from LFSR output to do something completely different: system identification. We’ll show two different methods of active system identification, one using sine waves and the other...
A Wish for Things That Work
As the end of the year approaches, I become introspective. This year I am frustrated by bad user interfaces in software.
Actually, every year, throughout the year, I am frustrated by bad user interfaces in software. And yet here it is, the end of 2017, and things aren’t getting much better! Argh!
I wrote about this sort of thing a bit back in 2011 (“Complexity in Consumer Electronics Considered Harmful”) but I think it’s time to revisit the topic. So I’m...
Linear Feedback Shift Registers for the Uninitiated, Part XII: Spread-Spectrum Fundamentals
Last time we looked at the use of LFSRs for pseudorandom number generation, or PRNG, and saw two things:
- the use of LFSR state for PRNG has undesirable serial correlation and frequency-domain properties
- the use of single bits of LFSR output has good frequency-domain properties, and its autocorrelation values are so close to zero that they are actually better than a statistically random bit stream
The unusually-good correlation properties...
The Other Kind of Bypass Capacitor
There’s a type of bypass capacitor I’d like to talk about today.
It’s not the usual power supply bypass capacitor, aka decoupling capacitor, which is used to provide local charge storage to an integrated circuit, so that the high-frequency supply currents to the IC can bypass (hence the name) all the series resistance and inductance from the power supply. This reduces the noise on a DC voltage supply. I’ve...
Ten Little Algorithms, Part 3: Welford's Method (and Friends)
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Last time we talked about a low-pass filter, and we saw that a one-line...
Linear Feedback Shift Registers for the Uninitiated
In 2017 and 2018 I wrote an eighteen-part series of articles about linear feedback shift registers, or LFSRs:
div.jms-article-content ol > li { list-style-type: upper-roman } Ex-Pralite Monks and Finite Fields, in which we describe what an LFSR is as a digital circuit; its cyclic behavior over time; the definition of groups, rings, and fields; the isomorphism between N-bit LFSRs and the field \( GF(2^N) \); and the reason why I wrote this seriesMy Love-Hate Relationship with Stack Overflow: Arthur S., Arthur T., and the Soup Nazi
Warning: In the interest of maintaining a coherent stream of consciousness, I’m lowering the setting on my profanity filter for this post. Just wanted to let you know ahead of time.
I’ve been a user of Stack Overflow since December of 2008. And I say “user” both in the software sense, and in the drug-addict sense. I’m Jason S, user #44330, and I’m a programming addict. (Hi, Jason S.) The Gravatar, in case you were wondering, is a screen...
Short Takes (EE Shanty): What shall we do with a zero-ohm resistor?
In circuit board design you often need flexibility. It can cost hundreds or thousands of dollars to respin a circuit board, so I need flexibility for two main reasons:
- sometimes it's important to be able to use one circuit board design to serve more than one purpose
- risk reduction: I want to give myself the option to add in or leave out certain things when I'm not 100% sure I'll need them.
And so we have jumpers and DIP switches and zero-ohm resistors:
Jumpers and...
Byte and Switch (Part 1)
Imagine for a minute you have an electromagnet, and a microcontroller, and you want to use the microcontroller to turn the electromagnet on and off. Sounds pretty typical, right?We ask this question on our interviews of entry-level electrical engineers: what do you put between the microcontroller and the electromagnet?We used to think this kind of question was too easy, but there are a surprising number of subtleties here (and maybe a surprising number of job candidates that were missing...
Important Programming Concepts (Even on Embedded Systems) Part V: State Machines
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part VI: Abstraction
Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.
Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...
Lost Secrets of the H-Bridge, Part I: Ripple Current in Inductive Loads
So you think you know about H-bridges? They're something I mentioned in my last post about signal processing with Python.
Here we have a typical H-bridge with an inductive load. (Mmmmm ahhh! It's good to draw by hand every once in a while!) There are four power switches: QAH and QAL connecting node A to the DC link, and QBH and QBL connecting node B to the DC link. The load is connected between nodes A and B, and here is represented by an inductive load in series with something else. We...
Zebras Hate You For No Reason: Why Amdahl's Law is Misleading in a World of Cats (And Maybe in Ours Too)
I’ve been wasting far too much of my free time lately on this stupid addicting game called the Kittens Game. It starts so innocently. You are a kitten in a catnip forest. Gather catnip.
And you click on Gather catnip and off you go. Soon you’re hunting unicorns and building Huts and studying Mathematics and Theology and so on. AND IT’S JUST A TEXT GAME! HTML and Javascript, that’s it, no pictures. It’s an example of an
Modeling Gate Drive Diodes
This is a short article about how to analyze the diode in some gate drive circuits when figuring out turn-off characteristics --- specifically, determining the relationship between gate drive current and gate voltage during turn-off of a power transistor.
Lost Secrets of the H-Bridge, Part III: Practical Issues of Inductor and Capacitor Ripple Current
We've been analyzing the ripple current in an H-bridge, both in an inductive load and the DC link capacitor. Here's a really quick recap; if you want to get into more details, go back and read part I and part II until you've got equations coming out of your ears. I promise there will be a lot less grungy math in this post. So let's get most of it out of the way:
Switches QAH and QAL are being turned on and off with pulse-width modulation (PWM), to produce an average voltage DaVdc on...
Two Capacitors Are Better Than One
I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:
And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.
Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?
I...
Lazy Properties in Python Using Descriptors
This is a bit of a side tangent from my normal at-least-vaguely-embedded-related articles, but I wanted to share a moment of enlightenment I had recently about descriptors in Python. The easiest way to explain a descriptor is a way to outsource attribute lookup and modification.
Python has a bunch of “magic” methods that are hooks into various object-oriented mechanisms that let you do all sorts of ridiculously clever things. Whether or not they’re a good idea is another...
Byte and Switch (Part 2)
In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:
We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...
The Least Interesting Circuit in the World
It does nothing, most of the time.
It cannot compute pi. It won’t oscillate. It doesn’t light up.
Often it makes other circuits stop working.
It is… the least interesting circuit in the world.
What is it?
About 25 years ago, I took a digital computer architecture course, and we were each given use of an ugly briefcase containing a bunch of solderless breadboards and a power supply and switches and LEDs — and a bunch of
Slew Rate Limiters: Nonlinear and Proud of It!
I first learned about slew rate limits when I was in college. Usually the subject comes up when talking about the nonideal behavior of op-amps. In order for the op-amp output to swing up and down quickly, it has to charge up an internal capacitor with a transistor circuit that’s limited in its current capability. So the slew rate limit \( \frac{dV}{dt} = \frac{I_{\rm max}}{C} \). And as long as the amplitude and frequency aren’t too high, you won’t notice it. But try to...
Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
Important Programming Concepts (Even on Embedded Systems) Part II: Immutability
Other articles in this series:
- Part I: Idempotence
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines
- Part VI: Abstraction
This article will discuss immutability, and some of its variations in the topic of functional programming.
There are a whole series of benefits to using program variables that… well, that aren’t actually variable, but instead are immutable. The impact of...
Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...
Oscilloscope Dreams
My coworkers and I recently needed a new oscilloscope. I thought I would share some of the features I look for when purchasing one.
When I was in college in the early 1990's, our oscilloscopes looked like this:
Now the cathode ray tubes have almost all been replaced by digital storage scopes with color LCD screens, and they look like these:
Oscilloscopes are basically just fancy expensive boxes for graphing voltage vs. time. They span a wide range of features and prices:...
