## Lessons Learned from Embedded Code Reviews (Including Some Surprises)

My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.

My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “

## Ten Little Algorithms, Part 4: Topological Sort

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...

## Oh Robot My Robot

Oh Robot! My Robot! You’ve broken off your nose! Your head is spinning round and round, your eye no longer glows, Each program after program tapped your golden memory, You used to have 12K, now there is none that I can see, Under smoldering antennae, Over long forgotten feet, My sister used your last part: The chip she tried to eat.

Oh Robot, My Robot, the remote controls—they call, The call—for...

## Important Programming Concepts (Even on Embedded Systems) Part VI : Abstraction

Earlier articles:

- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines

We have come to the last part of the Important Programming Concepts series, on abstraction. I thought I might also talk about why there isn’t a Part VII, but decided it would distract from this article — so if you want to know the reason, along with what’s next,

## Ten Little Algorithms, Part 3: Welford's Method (and Friends)

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Last time we talked about a low-pass filter, and we saw that a one-line...

## Python Code from My Articles Now Online in IPython Notebooks

Ever since I started using IPython Notebooks to write these articles, I’ve been wanting to publish them in a form such that you can freely use my Python code. One of you (maredsous10) wanted this access as well.

Well, I finally bit the bullet and automated a script that will extract the Python code and create standalone notebooks, that are available publicly under the Apache license on my bitbucket account: https://bitbucket.org/jason_s/embedded-blog-public

This also means they...

## Ten Little Algorithms, Part 2: The Single-Pole Low-Pass Filter

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

I’m writing this article in a room with a bunch of other people talking, and while sometimes I wish they would just SHUT UP, it would be...

## Ten Little Algorithms, Part 1: Russian Peasant Multiplication

This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.

Other articles in this series:

- Part 1:

## Two Capacitors Are Better Than One

I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:

And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.

Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?

I...

## My Love-Hate Relationship with Stack Overflow: Arthur S., Arthur T., and the Soup Nazi

Warning: In the interest of maintaining a coherent stream of consciousness, I’m lowering the setting on my profanity filter for this post. Just wanted to let you know ahead of time.

I’ve been a user of Stack Overflow since December of 2008. And I say “user” both in the software sense, and in the drug-addict sense. I’m Jason S, user #44330, and I’m a programming addict. (Hi, Jason S.) The Gravatar, in case you were wondering, is a screen...

## Linear Feedback Shift Registers for the Uninitiated, Part VIII: Matrix Methods and State Recovery

Last time we looked at a dsPIC implementation of LFSR updates. Now we’re going to go back to basics and look at some matrix methods, which is the third approach to represent LFSRs that I mentioned in Part I. And we’re going to explore the problem of converting from LFSR output to LFSR state.

Matrices: Beloved Historical DregsElwyn Berlekamp’s 1966 paper Non-Binary BCH Encoding covers some work on

## How to Analyze a Differential Amplifier

There are a handful of things that you just have to know if you do any decent amount of electronic circuit design work. One of them is a voltage divider. Another is the behavior of an RC filter. I'm not going to explain these two things or even link to a good reference on them — either you already know how they work, or you're smart enough to look it up yourself.

The handful of things also includes some others that are a little more interesting to discuss. One of them is this...

## Two Capacitors Are Better Than One

I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:

And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.

Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?

I...

## Ten Little Algorithms, Part 4: Topological Sort

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection

Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...

## Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes

Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.

This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...

## Signal Processing Contest in Python (PREVIEW): The Worst Encoder in the World

When I posted an article on estimating velocity from a position encoder, I got a number of responses. A few of them were of the form "Well, it's an interesting article, but at slow speeds why can't you just take the time between the encoder edges, and then...." My point was that there are lots of people out there which take this approach, and don't take into account that the time between encoder edges varies due to manufacturing errors in the encoder. For some reason this is a hard concept...

## Margin Call: Fermi Problems, Highway Horrors, Black Swans, and Why You Should Worry About When You Should Worry

“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don’t know. But there are also unknown unknowns — there are things we do not know we don’t know.” — Donald Rumsfeld, February 2002

Today’s topic is engineering margin.

XKCD had a what-if column involving Fermi...

## Fluxions for Fun and Profit: Euler, Trapezoidal, Verlet, or Runge-Kutta?

Today we're going to take another diversion from embedded systems, and into the world of differential equations, modeling, and computer simulation.

DON'T PANIC!First of all, just pretend I didn't bring up anything complicated. We're exposed to the effects of differential equations every day, whether we realize it or not. Your car speedometer and odometer are related by a differential equation, and whether you like math or not, you probably have some comprehension of what's going on: you...

## Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Other articles in this series:

- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...

## Ten Little Algorithms, Part 7: Continued Fraction Approximation

In this article we explore the use of continued fractions to approximate any particular real number, with practical applications.

## The Other Kind of Bypass Capacitor

There’s a type of bypass capacitor I’d like to talk about today.

It’s not the usual power supply bypass capacitor, aka decoupling capacitor, which is used to provide local charge storage to an integrated circuit, so that the high-frequency supply currents to the IC can bypass (hence the name) all the series resistance and inductance from the power supply. This reduces the noise on a DC voltage supply. I’ve...

## Lost Secrets of the H-Bridge, Part II: Ripple Current in the DC Link Capacitor

In my last post, I talked about ripple current in inductive loads.

One of the assumptions we made was that the DC link was, in fact, a DC voltage source. In reality that's an approximation; no DC voltage source is perfect, and current flow will alter the DC link voltage. To analyze this, we need to go back and look at how much current actually is being drawn from the DC link. Below is an example. This is the same kind of graph as last time, except we added two...

## How to Include MathJax Equations in SVG With Less Than 100 Lines of JavaScript!

Today’s short and tangential note is an account of how I dug myself out of Documentation Despair. I’ve been working on some block diagrams. You know, this sort of thing, to describe feedback control systems:

And I had a problem. How do I draw diagrams like this?

I don’t have Visio and I don’t like Visio. I used to like Visio. But then it got Microsofted.

I can use MATLAB and Simulink, which are great for drawing block diagrams. Normally you use them to create a...

## Stairway to Thévenin

This article was inspired by a recent post on reddit asking for help on Thévenin and Norton equivalent circuits.

(With apologies to Mr. Thévenin, the rest of the e's that follow will remain unaccented.)

I still remember my introductory circuits class on the subject, roughly as follows:

(NOTE: Do not get scared of what you see in the rest of this section. We're going to point out the traditional approach for teaching linear equivalent circuits first. If you have...

## Jaywalking Around the Compiler

Our team had another code review recently. I looked at one of the files, and bolted upright in horror when I saw a function that looked sort of like this:

void some_function(SOMEDATA_T *psomedata) { asm volatile("push CORCON"); CORCON = 0x00E2; do_some_other_stuff(psomedata); asm volatile("pop CORCON"); }There is a serious bug here — do you see what it is?

## Oscilloscope review: Hameg HMO2024

Last year I wrote about some of the key characteristics of oscilloscopes that are important to me for working with embedded microcontrollers. In that blog entry I rated the Agilent MSOX3024A 4-channel 16-digital-input oscilloscope highly.

Since then I have moved to a different career, and I am again on the lookout for an oscilloscope. I still consider the Agilent MSOX3024A the best choice for a...

## Have You Ever Seen an Ideal Op-Amp?

Somewhere, along with unicorns and the Loch Ness Monster, lies a small colony of ideal op-amps. Op-amp is short for operational amplifier, and we start our education on them by learning about these mythical beasts, which have the following properties:

- Infinite gain
- Infinite input impedance
- Zero output impedance

And on top of it all, they will do whatever it takes to change their output in order to make their two inputs equal.

But they don't exist. Real op-amps have...

## Complexity in Consumer Electronics Considered Harmful

I recently returned from a visit to my grandmother, who lives in an assisted living community, and got to observe both her and my frustration first-hand with a new TV. This was a Vizio flatscreen TV that was fairly easy to set up, and the picture quality was good. But here's what the remote control looks like:

You will note:

- the small lettering (the number buttons are just under 1/4 inch in diameter)
- a typeface chosen for marketing purposes (matching Vizio's "futuristic" corporate...

## Important Programming Concepts (Even on Embedded Systems) Part VI : Abstraction

Earlier articles:

- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines

We have come to the last part of the Important Programming Concepts series, on abstraction. I thought I might also talk about why there isn’t a Part VII, but decided it would distract from this article — so if you want to know the reason, along with what’s next,

## Optimizing Optoisolators, and Other Stories of Making Do With Less

It’s been a few months since I’ve rolled up my sleeves here and dug into some good old circuit design issues. I started out with circuit design articles, and I’ve missed it.

Today’s topic will be showing you some tricks for how to get more performance out of an optoisolator. These devices — and I’m tempted to be lazy and call them “optos”, but that sounds more like a cereal with Greek yogurt-covered raisins — are essentially just an LED...