EmbeddedRelated.com

The Other Kind of Bypass Capacitor

Jason Sachs January 3, 20173 comments

There’s a type of bypass capacitor I’d like to talk about today.

It’s not the usual power supply bypass capacitor, aka decoupling capacitor, which is used to provide local charge storage to an integrated circuit, so that the high-frequency supply currents to the IC can bypass (hence the name) all the series resistance and inductance from the power supply. This reduces the noise on a DC voltage supply. I’ve...


How to Succeed in Motor Control: Olaus Magnus, Donald Rumsfeld, and YouTube

Jason Sachs December 11, 2016

Almost four years ago, I had this insight — we were doing it wrong! Most of the application notes on motor control were about the core algorithms: various six-step or field-oriented control methods, with Park and Clarke transforms, sensorless estimators, and whatnot. It was kind of like a driving school would be, if they taught you how the accelerator and brake pedal worked, and how the four-stroke Otto cycle works in internal combustion engines, and handed you a written...


Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Jason Sachs November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...


Scorchers, Part 1: Tools and Burn Rate

Jason Sachs April 12, 20167 comments

This is a short article about one aspect of purchasing, for engineers.

I had an engineering manager once — I’ll leave his real name out of it, but let’s call him Barney — who had a catchy response to the question “Can I buy XYZ?”, where XYZ was some piece of test equipment, like an oscilloscope or multimeter. Barney said, “Get what you need, need what you get.” We used purchase orders, which when I started in 1996 were these quaint forms on...


Padé Delay is Okay Today

Jason Sachs March 1, 20166 comments

This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.

Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:

Impressed? Maybe you should be. This...


Margin Call: Fermi Problems, Highway Horrors, Black Swans, and Why You Should Worry About When You Should Worry

Jason Sachs December 6, 20152 comments

“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don’t know. But there are also unknown unknowns — there are things we do not know we don’t know.” — Donald Rumsfeld, February 2002

Today’s topic is engineering margin.

XKCD had a what-if column involving Fermi...


Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method

Jason Sachs November 11, 20159 comments

Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of the waveform they were sampled from.


The Dilemma of Unwritten Requirements

Jason Sachs October 25, 20151 comment

You will probably hear the word “requirements” at least 793 times in your engineering career, mostly in the context of how important it is, in any project, to agree upon clear requirements before committing to (and hastily proceeding towards) a deadline. Some of those times you may actually follow that advice. Other times it’s just talk, like how you should “wear sunscreen when spending time outdoors” and “eat a diet low in saturated fats and...


Trust, but Verify: Examining the Output of an Embedded Compiler

Jason Sachs September 27, 2015

I work with motor control firmware on the Microchip dsPIC33 series of microcontrollers. The vast majority of that firmware is written in C, with only a few percent in assembly. And I got to thinking recently: I programmed in C and C++ on an Intel PC from roughly 1991 to 2009. But I don’t remember ever working with x86 assembly code. Not once. Not even reading it. Which seems odd. I do that all the time with embedded firmware. And I think you should too. Before I say why, here are...


How to Read a Power MOSFET Datasheet

Jason Sachs September 15, 20159 comments

One of my pet peeves is when my fellow engineers misinterpret component datasheets. This happened a few times recently in separate instances, all involving power MOSFETs. So it’s time for me to get on my soapbox. Listen up!

I was going to post an article on how to read component datasheets in general. But MOSFETs are a good place to start, and are a little more specific. I’m not the first person to write something about how to read datasheets; here are some other good...


Important Programming Concepts (Even on Embedded Systems) Part III: Volatility

Jason Sachs October 10, 2014

1vol·a·tile adjective \ˈvä-lə-təl, especially British -ˌtī(-ə)l\ : likely to change in a very sudden or extreme way : having or showing extreme or sudden changes of emotion : likely to become dangerous or out of control

Merriam-Webster Online Dictionary

Other articles in this series:


10 More (Obscure) Circuit Components You Should Know

Jason Sachs February 5, 20121 comment

The interest in my previous article on obscure but useful electronics parts, "10 Circuit Components You Should Know" was encouraging enough that I thought I would write a followup. So here are another 10:

1. "Ideal Diode" controllers

Load-sharing circuits use diodes tied together at their cathode terminal to take the most positive voltage among the sources and connect it to a load. Works great: you have a DC/DC power supply, a battery, and a solar cell, and it will use whichever output is...


Real-time clocks: Does anybody really know what time it is?

Jason Sachs May 29, 20118 comments

We recently started writing software to make use of a real-time clock IC, and found to our chagrin that the chip was missing a rather useful function, namely elapsed time in seconds since the standard epoch (January 1, 1970, midnight UTC).Let me back up a second.A real-time clock/calendar (RTC) is a micropower chip that has an oscillator on it that keeps counting time, independent of main system power. Usually this is done with a lithium battery that can power the RTC for years, so that even...


Someday We’ll Find It, The Kelvin Connection

Jason Sachs July 28, 20142 comments

You’d think it wouldn’t be too hard to measure electrical resistance accurately. And it’s really not, at least according to wikiHow.com: you just follow these easy steps:

  • Choose the item whose resistance you wish to measure.
  • Plug the probes into the correct test sockets.
  • Turn on the multimeter.
  • Select the best testing range.
  • Touch the multimeter probes to the item you wish to measure.
  • Set the multimeter to a high voltage range after finishing the...

Ten Little Algorithms, Part 6: Green’s Theorem and Swept-Area Detection

Jason Sachs June 18, 20173 comments

Other articles in this series:

This article is mainly an excuse to scribble down some cryptic-looking mathematics — Don’t panic! Close your eyes and scroll down if you feel nauseous — and...


Tolerance Analysis

Jason Sachs May 31, 2020

Today we’re going to talk about tolerance analysis. This is a topic that I have danced around in several previous articles, but never really touched upon in its own right. The closest I’ve come is Margin Call, where I discussed several different techniques of determining design margin, and ran through some calculations to justify that it was safe to allow a certain amount of current through an IRFP260N MOSFET.

Tolerance analysis...


10 Items of Test Equipment You Should Know

Jason Sachs June 22, 20143 comments

When life gets rough and a circuit board is letting you down, it’s time to turn to test equipment. The obvious ones are multimeters and oscilloscopes and power supplies. But you know about those already, right?

Here are some you may not have heard of:

Non-contact current sensors. Oscilloscope probes measure voltage. When you need to measure current, you need a different approach. Especially at high voltages, where maintaining galvanic isolation is important for safety. The usual...


Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation

Jason Sachs August 6, 20182 comments

Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...


Fluxions for Fun and Profit: Euler, Trapezoidal, Verlet, or Runge-Kutta?

Jason Sachs September 30, 20132 comments

Today we're going to take another diversion from embedded systems, and into the world of differential equations, modeling, and computer simulation.

DON'T PANIC!

First of all, just pretend I didn't bring up anything complicated. We're exposed to the effects of differential equations every day, whether we realize it or not. Your car speedometer and odometer are related by a differential equation, and whether you like math or not, you probably have some comprehension of what's going on: you...


Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer

Jason Sachs November 13, 20171 comment

The last four articles were on algorithms used to compute with finite fields and shift registers:

Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.