
C++ on microcontrollers 4 – input pins, and decoding a rotary switch
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
So far I...
C++ on microcontrollers 3 – a first shot at an hc595 class with 8 output pins
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
In the first part of...
C++ on microcontrollers 2 - LPCXpresso, LPC-link, Code Sourcery, lpc21isp, linkerscript, LPC1114 startup
previous parts: 1
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
I teach my students that...
Using XML to describe embedded devices (and speak to them)
This article discusses one of the typical development cycles in embedded device and communication design and presents a possible, light weight solution using the free DClib/netpp framework.
The challengeAssume we're faced with the design of an embedded device, be it a simple SoC unit or a more complex, uC controlled engine with various attached peripherals. From first prototype to the market, the following development cycle is typically walked through:
C++ on microcontrollers 1 - introduction, and an output pin class
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
I am lazy. I am also a programmer. Luckily, being a lazy...
Which MOSFET topology?
A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:
From left to right, these are:
High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...Kind of Buggy! The state machine fantastic//
Over the years, I have had the opportunity to experience a lot of different kinds of coding mistakes. There were many that most programmers are familiar with, counting errors, indexing errors (the infamous 'off by one' bug), memory space sharing errors (A threading issue) as well as numerous others. I ran into one recently that I wound up using an old trick to help find.
My current project is a Pan/Tilt camera that was, upon occasion, not homing properly in one axis. The camera is a...
Deeply embedded design example - Logic replacement
I have always believed that some of the low-cost, low-pin count, low-resource microprocessors would make an excellent choice for the replacement of discrete logic components. In these cases the deeply embedded microprocessor would become less of a general purpose computer and more of a logic replacement, providing a prescribed function with no connection to the outside world. In a world of bigger, faster and more expensive, it is a pleasant change of pace...
VHDL tutorial - A practical example - part 3 - VHDL testbench
In part 1 of this series we focused on the hardware design, including some of the VHDL definitions of the I/O characteristics of the CPLD part. In part 2, we described the VHDL logic of the CPLD for this design. In part 3, we will show the entire VHDL design and the associated tests used to prove that we have, in fact, designed what we started out to design.
First, let's pull all of the pieces of the prior design together into a...
Thermistor signal conditioning: Dos and Don'ts, Tips and Tricks
In an earlier blog entry, I mentioned this circuit for thermistor signal conditioning:
It is worth a little more explanation on thermistor signal conditioning; it's something that's often done poorly, whereas it's among the easiest applications for signal conditioning.
The basic premise here is that there are two resistors in a voltage divider: Rth is the thermistor, and Rref is a reference resistor. Here Rref is either R3 alone, or R3 || R4, depending on the gain...
Coding - Step 0: Setting Up a Development Environment
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
You can easily find a million articles out there discussing compiler nuances, weighing the pros and cons of various data structures or discussing the optimization of databases. Those sorts of articles are fascinating reads for advanced programmers but...
Arduino robotics #3 - wiring, coding and a test run
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Arduino robotics #2 - chassis, locomotion and power
Arduino RoboticsBeginner robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Arduino robotics #4 - HC-SR04 ultrasonic sensor
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.Coding Step 2 - Source Control
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
When I first started out in programming, version control was not an introductory topic. Not in the least because it required a 'server' (ie, a computer which a teenaged me couldn't afford) but because it seemed difficult and only useful to teams rather than...
Embedded Software Creation II - European Normative & Legislation
In this post I will explain the European Normative. I will answer the main questions and I will be open to answer all the doubts any of you could have. Please leave a comment and I will answer if i could.
Why I need to look and accomplish some standards?The main reason is if you want to comercialize the product in the European Union, if exists any European Directive that cover the product, the product must be marked with the CE mark. For USA it work in the same way by the...
Good old multiplexed keypad in an embedded system
Good old multiplexed keypad in embedded systems
(My www.embeddedrelated.com Blog No.1)
Touch-screens, rotary encoder switches and other navigational aids rule the user interface these days. Navigation through menus and sub-menus is child’s play as icons and thumbnails rule the screen.
Jumping from one screen to another, switching between programs and event notification pop-ups are made possible due to high...
Motion Sensor with Raspberry Pi and MPU6050 - Part 1
This blog will help you build your own, low cost 3-axis motion sensor using Raspberry Pi and Invensense MPU6050.
NXP LPC17xx/40xx: Decoding the Part ID
This is the first blog of a number dealing with the NXP LPC17xx/40xx processor families and how to program them despite the lack of documentation. The next blog will deal with implementing the LPC17xx/40xx UART with interrupts properly, and a subsequent blog will show how to use the UART in RS485 Normal Multidrop Mode (NMM) with Auto Address Detection (AAD).
My company has decided on using the NXP LPC17xx/40xx processor line for all our embedded projects. Since...
Intro to Microcontrollers Part 2: AVR Microcontrollers
IntroductionThis is part 2 of my playing around with AVR microcontrollers. Last time, I had a basic setup which could program an AVR using the Arduino ISP. I used it to drive a simple 7-segment, multiplexed 4-digit LED display. This is a follow up where I try out some of the other features the ATTiny24A has to offer. I also decided to invest some money in an AVR Dragon programmer/debugger so I'll go over some basic playing and setup with this device. I'll also discuss some of the problems...
Designing Embedded System with FPGA - 1
With the introduction of soft processors and related tools (like EDK from Xilinx), implementation of basic embedded system in FPGA is made easy. This requires very little or almost no knowledge of VHDL programming. Actually that’s how I started. If user is interested in taking full advantage of FPGA and its parallel processing power, then yes, detail understanding of soft processor, its peripheral bus and VHDL programming is required.
I will start with...
Cracking the (embedded) Coding Interview
You never forget the day you land your first job.
The thrill of receiving that call from your recruiter to tell you that you bagged your dream role! The relief when you finally see the offer letter you’ve been working towards for years. The pride in your parents' voices when you call home and say “Hey look Ma, I’ve made it!”
But before that, there’s the grueling screening process to get through. Tech interviews often last up to three months and companies can have five...
Coding Step 4 - Design
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
The last article in this series discussed how to write functional high-level requirements: specifications for what your software is supposed to do. Software design is the other side of the coin....
Deeply embedded design example - Logic replacement
I have always believed that some of the low-cost, low-pin count, low-resource microprocessors would make an excellent choice for the replacement of discrete logic components. In these cases the deeply embedded microprocessor would become less of a general purpose computer and more of a logic replacement, providing a prescribed function with no connection to the outside world. In a world of bigger, faster and more expensive, it is a pleasant change of pace...
C++ on microcontrollers 3 – a first shot at an hc595 class with 8 output pins
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
In the first part of...
Designing Embedded Systems with FPGA-2
In last part, we created hardware design of basic system. The next step is to generate (compile) hardware design. Compiled hardware design is known as bit-stream andstored in *.bit file. To compile hardware, use hardware->generate hardware tab. The complete hardware design generation takes several seconds to several minutes depending on computer speed and design complexity. In back ground, the whole design process involves many different steps including synthesis, placement, routing and...
An Introduction to Embedded Development
This blog is a series to provide an introduction to embedded development for the aspiring embedded developer. No prior embedded development experience will be assumed, but you should have a reasonable understanding of the C language and knowledge of basic electronics. It will focus on the TI MSP430, but present topics in a generic way that can be easily translated to other processors. Welcome!Hello, and welcome to my blog! This blog will be somewhat different from most...
Motion Sensor with Raspberry Pi and MPU6050 - Part 1
This blog will help you build your own, low cost 3-axis motion sensor using Raspberry Pi and Invensense MPU6050.
NXP LPC17xx/40xx: Decoding the Part ID
This is the first blog of a number dealing with the NXP LPC17xx/40xx processor families and how to program them despite the lack of documentation. The next blog will deal with implementing the LPC17xx/40xx UART with interrupts properly, and a subsequent blog will show how to use the UART in RS485 Normal Multidrop Mode (NMM) with Auto Address Detection (AAD).
My company has decided on using the NXP LPC17xx/40xx processor line for all our embedded projects. Since...
Making a connection 1
In order for your system to control devices, you must be able to connect it to those devices.
Besides different sizes based on wire size, there are a few different styles of connectors that can be used. There are also weather-resistant terminals that can be used if needed.
Ring
(Parks, 16)
- used for circuits that you don’t want to become easily disconnected
- ground wire attached to a stud
Push-On
- can be used on relay terminals
(Parks, 18)
- could be...
