EmbeddedRelated.com

Using a RTLSDR dongle to validate NRF905 configuration

Fabien Le Mentec January 27, 20146 comments
I am currently working on a system to monitor the garage door status from my flat. Both places are 7 floors apart, and I need to send the data wirelessly. I chose to operate on the 433MHz carrier, and I ordered 2 PTR8000 modules: http://www.electrodragon.com/w/NRF905_Transceiver_433MHz-Wireless_ModuleThe PTR8000 is based on the dual band sub 1GHz NRF905 chipset from NORDICSEMI: http://www.nordicsemi.com/eng/Products/Sub-1-GHz-RF/nRF905I...

How to Arduino - a video toolbox

Lonnie Honeycutt November 15, 20131 comment

I've begun producing a new series of video tutorials for the hobbyist new to the Arduino or microcontrollers in general.  My videos are very pragmatic - I prefer to answer the question "what is the quickest, simplest and most affordable way to accomplish this?".  The videos are meant to be a quick source of "how to" knowledge for the hobbyist that is using an LCD display, ultrasonic sensor or accelerometer for the first time, for example.  I hope you enjoy this series of...


Introduction to Microcontrollers - Driving WS2812 RGB LEDs

Mike Silva November 14, 201330 comments

This tutorial chapter is a bit of a detour, but I think an interesting and useful one.  It introduces a bit of assembly language programming, and demonstrates bit-banging a tight serial data protocol.  And it deals with RGB LEDs, which are just very fun in their own right, especially these new parts.  So I thought I'd post this to give readers time for some holiday lighting experimenting.

Back To The Future

Remember how we started this...


Introduction to Microcontrollers - Button Matrix & Auto Repeating

Mike Silva November 12, 2013

Too Many Buttons, Not Enough Inputs

Assigning one GPIO input to each button can use up a lot of GPIO pins.  Numeric input requires at least 10 buttons, plus however many additional control or function buttons.  This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be.  A very common response to this expense is to wire buttons (keys, etc) in a matrix.  By connecting our buttons in an...


Energia - program a TI MSP430 using Arduino sketches

Lonnie Honeycutt November 5, 20131 comment
TI MSP430 Launchpad

I started tinkering with microcontroller a couple of years ago with an Arduino Uno.  I had a little experience with C, so programming in the Arduino environment has been relatively easy and straightforward for me.  My code is not necessarily elegant or efficient, but I can usually figure out how to make an Arduino do what I want it to do eventually.  A lot of credit to the Arduino userbase, as it is very easy to figure most things out with a quick Google...


Embedded Systems - free EdX course by UT-Austin!

Lonnie Honeycutt October 29, 20131 comment

I was very excited to see that there will be an Embedded Systems class available for free at https://www.edx.org/course/utaustin/ut-6-01x/embedded-systems-shape-world/1172

It's free to sign up and take the online class at the EdX website.

More exciting is that the class is based on a TI Launchpad Tiva microcontroller development board.  The Tiva Launchpad features an 80-MHz ARM Cortex M-4 MCU with 256 KB of flash storage, 32 KB of RAM and 43 general purpose I/O pins.  


Introduction to Microcontrollers - Buttons and Bouncing

Mike Silva October 26, 20135 comments

What Is A Button?

To your hardware, that is.  As discussed in Introduction to Microcontrollers - More On GPIO, a button (or key, or switch, or any form of mechanical contact) is generally hooked up to a microcontroller so as to generate a certain logic level when pushed or closed or "active," and the opposite logic level when unpushed or open or "inactive."  The active logic level can be either '0' or '1', but for reasons both historical and electrical, an...


Arduino robotics #4 - HC-SR04 ultrasonic sensor

Lonnie Honeycutt October 20, 20131 comment
Arduino Robotics

Arduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot.  This build is meant to be affordable, relatively easy and instructive.  The total cost of the build is around $50.  

1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.

Arduino robotics #3 - wiring, coding and a test run

Lonnie Honeycutt October 17, 2013
Arduino Robotics

Arduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot.  This build is meant to be affordable, relatively easy and instructive.  The total cost of the build is around $50.  

1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4. 

Arduino robotics #2 - chassis, locomotion and power

Lonnie Honeycutt October 16, 20131 comment
Arduino Robotics

Beginner robotics is a series of article chronicling my first autonomous robot build, Clusterbot.  This build is meant to be affordable, relatively easy and instructive.  The total cost of the build is around $50.  

1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4. 

NULL pointer protection with ARM Cortex-M MPU

Miro Samek July 16, 2023

This post explains how you can set up the ARM Cortex-M MPU (Memory Protection Unit) to protect thy code from dragons, demons, core dumps, and numberless other foul creatures awaiting thee after thou dereference the NULL pointer.


Are We Shooting Ourselves in the Foot with Stack Overflow?

Miro Samek September 8, 20234 comments

Most traditional, beaten-path memory layouts allocate the stack space above the data sections in RAM, even though the stack grows “down” (towards the lower memory addresses) in most embedded processors. This arrangement puts your program data in the path of destruction of a stack overflow. In other words, you violate the first Gun Safety Rule (ALWAYS keep the gun pointed in a safe direction!) and you end up shooting yourself in the foot. This article shows how to locate the stack at the BEGINNING of RAM and thus point it in the "safe" direction.


Cutting Through the Confusion with ARM Cortex-M Interrupt Priorities

Miro Samek February 26, 2016

The insanely popular ARM Cortex-M processor offers very versatile interrupt priority management, but unfortunately, the multiple priority numbering conventions used in managing the interrupt priorities are often counter-intuitive, inconsistent, and confusing, which can lead to bugs. In this post I attempt to explain the subject and cut through the confusion.

The Inverse Relationship Between Priority Numbers and Urgency of the Interrupts

The most important fact to know is that ARM...


Introduction to Deep Insight Analysis for RTOS Based Applications

Jacob Beningo September 20, 20171 comment

Over the past several years, embedded systems have become extremely complex. As systems become more complex, they become harder and more time consuming to debug. It isn’t uncommon for development teams to spend more than 40% development cycle time just debugging their systems. This is where deep insight analysis has the potential to dramatically decrease costs and time to market.

Defining Deep Insight Analysis

Deep insight analysis is a set of tools and techniques that can be...


Embedded Systems - free EdX course by UT-Austin!

Lonnie Honeycutt October 29, 20131 comment

I was very excited to see that there will be an Embedded Systems class available for free at https://www.edx.org/course/utaustin/ut-6-01x/embedded-systems-shape-world/1172

It's free to sign up and take the online class at the EdX website.

More exciting is that the class is based on a TI Launchpad Tiva microcontroller development board.  The Tiva Launchpad features an 80-MHz ARM Cortex M-4 MCU with 256 KB of flash storage, 32 KB of RAM and 43 general purpose I/O pins.  


3 Overlooked Embedded Software Elements

Jacob Beningo July 9, 20224 comments

Have you ever wondered, while you and your team are busy writing software if the foundation of how embedded software systems are built has changed and left you in the dust? What if while you were busily focusing on getting your product out the door, fighting bugs, and dealing with supply issues, there were techniques and processes that you completely overlooked that could save the day? I’ve found three elements embedded software teams often underutilize that could dramatically improve...


AI at the Edge - Can I run a neural network in a resource-constrained device?

Stephen Martin March 11, 20192 comments

Hello Related Communities,

This is my first time blogging since joining Stephane in November. He and I were at Embedded World together and he asked me to write about some of the important trends as they relate to all of you. I expect to post others in the near future, but the biggest trend in the embedded space was all of the activity around artificial intelligence (AI) at the edge. 

This trend caught me a bit by surprise. I have been doing a lot of reading about AI over the last...


Getting Started With Zephyr: Kconfig

Mohammed Billoo June 22, 2023

In this blog post, we briefly look at Kconfig, one of the core pieces of the Zephyr infrastructure. Kconfig allows embedded software developers to turn specific subsystems on or off within Zephyr efficiently and control their behavior. We also learn how we can practically use Kconfig to control the features of our application using the two most common mechanisms.


Getting Started with (Apache) NuttX RTOS - Part 1

Alan C Assis June 2, 20235 comments

NuttX RTOS is used in many products from companies like Sony, Xiaomi, Samsung, Google/Fitbit, WildernessLabs and many other companis. So, probably you are already using NuttX even without knowing it, like the you was using Linux on your TV, WiFi router more than 10 years ago and didn't know too! Today you will have the chance to discover a little bit of this fantastic Linux-like RTOS! Are you ready? So, let's get started!


Getting Started With Zephyr: Devicetree Overlays

Mohammed Billoo September 25, 2023

In this blog post, I show how the Devicetree overlay is a valuable construct in The Zephyr Project RTOS. Overlays allow embedded software engineers to override the default pin configuration specified in Zephyr for a particular board. In this blog post, I use I2C as an example. Specifically, I showed the default I2C pins used for the nRF52840 development kit in the nominal Zephyr Devicetree. Then, I demonstrated how an overlay can be used to override this pin configuration and the final result.