Cortex-M Exception Handling (Part 1)
This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems. The main reason of discussing this topic in detail is that, in the past few years, the degree of sophistication (and complexity) of microcontrollers in handling interrupts steadily increased, bringing them on a par with general-purpose processors.
Coding Step 4 - Design
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
The last article in this series discussed how to write functional high-level requirements: specifications for what your software is supposed to do. Software design is the other side of the coin....
The three laws of safe embedded systems
This short article is part of an ongoing series in which I aim to explore some techniques that may be useful for developers and organisations that are beginning their first safety-related embedded project.
In the last two weeks, I’ve had the opportunity to discuss the contents of my previous article on this site with a group of very smart and enthusiastic engineers in Cairo (Egypt). As part of this discussion, it has become clear that I should add a few more details to explain the work...
Developing software for a safety-related embedded system for the first time
I spend most of my working life with organisations that develop software for high-reliability, real-time embedded systems. Some of these systems are created in compliance with IEC 61508, ISO 26262, DO-178C or similar international standards.
When working with organisations that are developing software for their first safety-related design, I’m often asked to identify the key issues that distinguish this process from the techniques used to develop “ordinary” embedded software.
...“Smarter” cars, unintended acceleration – and unintended consequences
In this article, I consider some recent press reports relating to embedded software in the automotive sector.
In The Times newspaper (London, 2015-10-16) the imminent arrival of Tesla cars that “use autopilot technology to park themselves and change lane without intervention from the driver” was noted.
By most definitions, the Tesla design incorporates what is sometimes called “Artificial Intelligence” (AI).Others might label it a “Smart” (or at least “Smarter”)...
Coding Step 3 - High-Level Requirements
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2- Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
If this series of articles has been light on one thing it's 'coding'. If it's been light on two things the second is 'embedded'. In three articles I haven't gotten past Hello World on a desktop PC. That changes (slowly) with this article. In this article I'll...
Lessons Learned from Embedded Code Reviews (Including Some Surprises)
My software team recently finished a round of code reviews for some of our motor controller code. I learned a lot from the experience, most notably why you would want to have code reviews in the first place.
My background is originally from the medical device industry. In the United States, software in medical devices gets a lot of scrutiny from the Food and Drug Administration, and for good reason; it’s a place for complexity to hide latent bugs. (Can you say “
Dark Corners of C - The Comma Operator
I've been programming in C for 16 years or so and the language has existed for much much longer than that. You might think that there'd be nothing left to surprise me after so long - but you'd be wrong. Imagine my surprise the first time I saw a line of code that looked something like this:
if (!dry_run && ((stdout_closed = true), close_stream (stdout) != 0))My mind couldn't parse it - what's a comma doing in there (after...
Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
Important Programming Concepts (Even on Embedded Systems) Part VI : Abstraction
Earlier articles:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines
We have come to the last part of the Important Programming Concepts series, on abstraction. I thought I might also talk about why there isn’t a Part VII, but decided it would distract from this article — so if you want to know the reason, along with what’s next,
Developing software for a safety-related embedded system for the first time
I spend most of my working life with organisations that develop software for high-reliability, real-time embedded systems. Some of these systems are created in compliance with IEC 61508, ISO 26262, DO-178C or similar international standards.
When working with organisations that are developing software for their first safety-related design, I’m often asked to identify the key issues that distinguish this process from the techniques used to develop “ordinary” embedded software.
...Modern Embedded Systems Programming: Beyond the RTOS
An RTOS (Real-Time Operating System) is the most universally accepted way of designing and implementing embedded software. It is the most sought after component of any system that outgrows the venerable "superloop". But it is also the design strategy that implies a certain programming paradigm, which leads to particularly brittle designs that often work only by chance. I'm talking about sequential programming based on blocking.
Blocking occurs any time you wait explicitly in-line for...
Watchdog Timer Anti-patterns
The humble watchdog timer has been an essential part of our reliability tool chest for decades now. The way it works is straightforward and easy to understand, and most practical designs are easy to interface with.
There is a wealth of reference material that covers both the theory behind watchdog timers and practical design tips. But what we'll talk about today is of a slightly different nature.
Despite its straightforward operation and long history, the watchdog timer does occasionally get...
Introduction to Microcontrollers - Ada - 7 Segments and Catching Errors
7 Segments the Ada WayHere is the Ada version (I should say AN Ada version) of the 7 segment multiplexing code presented in the last installment. The hardware now is the STM32F407 Discover board, which is a Cortex M4F board. There are lots of differences in GPIO and timer setup, but if you understoold the previous code in C you should not have much trouble understanding this code in Ada.
As interesting as the Ada approach to the task is the Ada ability to detect...
Bad Hash Functions and Other Stories: Trapped in a Cage of Irresponsibility and Garden Rakes
I was recently using the publish() function in MATLAB to develop some documentation, and I ran into a problem caused by a bad hash function.
In a resource-limited embedded system, you aren't likely to run into hash functions. They have three major applications: cryptography, data integrity, and data structures. In all these cases, hash functions are used to take some type of data, and deterministically boil it down to a fixed-size "fingerprint" or "hash" of the original data, such that...
Favorite Tools - Look Up Tables
As we grow in our engineering careers, we must continually add new tools to our collective tool kits. One favorite tool in my toolkit will be obvious to many experienced embedded software engineers. I still remember learning this approach early in my career via code written by colleague David Starling. The tool in question:
Look up tablesLook up tables simplify code and improve firmware maintenance. What is a look up table? A look up table is often nothing more complex than a...
Embedded Toolbox: Programmer's Calculator
Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.
I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...
From bare-metal to RTOS: 5 Reasons to use an RTOS
Developers can come up with amazing and convoluted reasons to not use an RTOS. I have heard excuses ranging from they are too expensive (despite open source solutions) all the way to they aren’t efficient and use too much memory. In some circumstances some excuses are justified but there are many reasons why a developer should look to an RTOS to help with their real-time scheduling needs.
From bare-metal to RTOS Quick LinksContinuous Integration for Embedded Systems
It is no secret that anyone who wants to streamline project management, reduce risk and improve the quality needs some form of "automation" in SW development processes. What is commonly used in most companies as a tool for such automation is called Continuous Integration (CI). It is a good practice for embedded systems as well even though it is much harder to use CI for embedded systems compared to pure software development because embedded systems mostly depend on...
Jaywalking Around the Compiler
Our team had another code review recently. I looked at one of the files, and bolted upright in horror when I saw a function that looked sort of like this:
void some_function(SOMEDATA_T *psomedata) { asm volatile("push CORCON"); CORCON = 0x00E2; do_some_other_stuff(psomedata); asm volatile("pop CORCON"); }There is a serious bug here — do you see what it is?
You Will Make Mistakes
</scorpion>: FAILAnyone out there see the TV pilot of Scorpion? Genius hacker squad meets Homeland Security in a fast-paced thriller to save hundreds of airplanes from crashing after LAX air traffic control software upgrade fails and they didn’t save a backup of the old version (ZOMG!!!) so thousands of people are going to die because the planes… well, they just can’t land! They just can’t. Even if the weather is sunny and calm and there could quite possibly...
Important Programming Concepts (Even on Embedded Systems) Part VI : Abstraction
Earlier articles:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines
We have come to the last part of the Important Programming Concepts series, on abstraction. I thought I might also talk about why there isn’t a Part VII, but decided it would distract from this article — so if you want to know the reason, along with what’s next,
Coding Step 3 - High-Level Requirements
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2- Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
If this series of articles has been light on one thing it's 'coding'. If it's been light on two things the second is 'embedded'. In three articles I haven't gotten past Hello World on a desktop PC. That changes (slowly) with this article. In this article I'll...
[ C Programming Techniques: integer type optimization ]
I am currently working on a voltage controller running on a ATMEGA328P, ATMEL AVR 8 bits microcontroller. The controller logic is implemented in the main() routine and relies on a periodical timer whose frequency is fixed at application setup. Among other things, the timer ISR handler increments some per tick counters which are then used by the main routine to implement the voltage controller timing logic.By looking at the code, one noticed that I use the uint8_t type for counters instead of...
Watchdog Timer Anti-patterns
The humble watchdog timer has been an essential part of our reliability tool chest for decades now. The way it works is straightforward and easy to understand, and most practical designs are easy to interface with.
There is a wealth of reference material that covers both the theory behind watchdog timers and practical design tips. But what we'll talk about today is of a slightly different nature.
Despite its straightforward operation and long history, the watchdog timer does occasionally get...
Linux Kernel Development - Part 1: Hello Kernel!
Our very first program in every language or framework usually is the notorious "Hello World" program. For this Linux Kernel Modules Development introduction we will follow the same concept, but instead of the usual "Hello World" we will make a "Hello Kernel!" and you will understand the reason in a few moments. Note that in this article I will not focus on a deep explanation about this topic for the moment, since this is only the introduction.
But before we dive into code we need to have the...
Project Directory Organization
A recent question on Reddit’s C Programming sub asked what sort of directory structure people use for their projects. Perhaps not unsurprisingly this didn’t elicit a flood of answers - maybe there are no organizational schemes that people are happy with or perhaps few people consider it a glamorous topic (not that the C Programming subreddit is filled with glamorous people -no offense I love you all). Personally I find it to be a very interesting topic. Organization and process are...
Favorite Tools - Look Up Tables
As we grow in our engineering careers, we must continually add new tools to our collective tool kits. One favorite tool in my toolkit will be obvious to many experienced embedded software engineers. I still remember learning this approach early in my career via code written by colleague David Starling. The tool in question:
Look up tablesLook up tables simplify code and improve firmware maintenance. What is a look up table? A look up table is often nothing more complex than a...
Tenderfoot: Embedded Software and Firmware Specialties
Once upon a time (seven years ago) I answered a question on Stack Overflow. Then Stephane suggested I turn that answer into a blog post. Great idea! This post dives deeper into the original question: “Is it possible to fragment this field (embedded software and firmware) into sub-fields?”
This post represents a detailed and updated response to my original Stack Overflow answer. I hope this post provides guidance and useful information to the “tenderfoots” in the...
Embedded Programming Video Course Shows How OOP Works Under the Hood
If you'd like to understand how Object-Oriented Programming (OOP) really works under the hood, here is a free video course for you:
OOP part-1: Encapsulation: This first lesson on Object-Oriented Programming (OOP) introduces the concept of Encapsulation, which is the ability to package data and functions together into classes. You'll see how you can emulate Encapsulation in C, what kind of code is generated, and how to debug such code. Next, you will translate the C design into C++ using...