
Ten Little Algorithms, Part 7: Continued Fraction Approximation
In this article we explore the use of continued fractions to approximate any particular real number, with practical applications.
Embedded Developer’s New Year’s Resolution
As we reach the end of another year, while wrapping up this one, we also contemplate the year ahead. Though nothing major might change on the 1st of January, it’s nice to pause during the holidays to reflect on the past and plan for future improvements.
I like to plan my professional improvements, and I always include them in my New Year’s resolution. Here are some ideas that I’d like to share.
Good Software Design PracticesYes, we Embedded developers love...
Remember Y2K?
There was fear that the turn of the century at the end of 1999 would cause problems with many embedded systems. There is evidence that the same issue may occur in 2038.
Getting Started With Zephyr: Writing Data to EEPROM
In this blog post, I show how to implement a Zephyr application to interact with EEPROM. I show how the Zephyr device driver model allows application writers to be free of the underlying implementation details. Unfortunately, the application didn't work as expected, and I'm still troubleshooting the cause.
My TDD Journey Started Dec 6, 1999
My story of learning Test-Driven Development started 23 years ago today. TDD has helped me exercise my code well before there is target hardware to run on. TDD helps me prevent defects. It can help you too.
More than just a pretty face - a good UI is essential
A user interface can make or break a device - determining its success in the marketplace. With careful design, the UI can make the product compelling and result in a high level of satisfaction from new and experienced users.
Getting Started with NuttX RTOS on Three Low Cost Boards
If you are an embedded system developer chances are you already played with Linux on some embedded board and saw how it is powerful, right?
So, I have a good news: you can have same power using NuttX on some ultra low cost board powered by a microcontroller instead of microprocessor (that normally is way more expansive).
In fact many companies already realized it before me. It explains why NuttX is the kernel used by many IoT frameworks:
Another great news is that few days ago...
Elliptic Curve Cryptography - Multiple Signatures
The use of point pairing becomes very useful when many people are required to sign one document. This is typical in a contract situation when several people are agreeing to a set of requirements. If we used the method described in the blog on signatures, each person would sign the document, and then the verification process would require checking every single signature. By using pairings, only one check needs to be performed. The only requirement is the ability to verify the...
Lightweight C++ Error-Codes Handling
The traditional C++ approach to error handling tends to distinguish the happy path from the unhappy path. This makes handling errors hard (or at least boring) to write and hard to read. In this post, I present a technique based on chaining operations that merges the happy and the unhappy paths. Thanks to C++ template and inlining the proposed technique is lightweight and can be used proficiently for embedded software.
Flood Fill, or: The Joy of Resource Constraints
When transferred from the PC world to a microcontroller, a famous, tried-and-true graphics algorithm is no longer viable. The challenge of creating an alternative under severe resource constraints is an intriguing puzzle, the kind that keeps embedded development fun and interesting.
How to Estimate Encoder Velocity Without Making Stupid Mistakes: Part II (Tracking Loops and PLLs)
Yeeehah! Finally we're ready to tackle some more clever ways to figure out the velocity of a position encoder. In part I, we looked at the basics of velocity estimation. Then in my last article, I talked a little about what's necessary to evaluate different kinds of algorithms. Now it's time to start describing them. We'll cover tracking loops and phase-locked loops in this article, and Luenberger observers in part III.
But first we need a moderately simple, but interesting, example...
Mastering Modern FPGA Skills for Engineers
In the rapidly evolving tech industry, engineers must acquire proficiency in modern FPGA skills. These skills empower engineers to optimize designs, minimize resource usage, and efficiently address FPGA design challenges while ensuring functionality, security, and compliance.
C to C++: 5 Tips for Refactoring C Code into C++
The article titled "Simple Tips to Refactor C Code into C++: Improve Embedded Development" provides essential guidance for embedded developers transitioning from C to C++. The series covers fundamental details necessary for a seamless transition and emphasizes utilizing C++ as a better C rather than diving into complex language features. The article introduces five practical tips for refactoring C code into C++. Replace #define with constexpr and const: Discouraging the use of #define macros, the article advocates for safer alternatives like constexpr and const to improve type safety, debugging, namespaces, and compile-time computation. Use Namespaces: Demonstrating the benefits of organizing code into separate logical groupings through namespaces, the article explains how namespaces help avoid naming conflicts and improve code readability. Replace C-style Pointers with Smart Pointers and References: Emphasizing the significance of avoiding raw pointers, the article suggests replacing them with C++ smart pointers (unique_ptr, shared_ptr, weak_ptr) and using references
Lost Secrets of the H-Bridge, Part I: Ripple Current in Inductive Loads
So you think you know about H-bridges? They're something I mentioned in my last post about signal processing with Python.
Here we have a typical H-bridge with an inductive load. (Mmmmm ahhh! It's good to draw by hand every once in a while!) There are four power switches: QAH and QAL connecting node A to the DC link, and QBH and QBL connecting node B to the DC link. The load is connected between nodes A and B, and here is represented by an inductive load in series with something else. We...
Padé Delay is Okay Today
This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.
Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:
Impressed? Maybe you should be. This...
My Love-Hate Relationship with Stack Overflow: Arthur S., Arthur T., and the Soup Nazi
Warning: In the interest of maintaining a coherent stream of consciousness, I’m lowering the setting on my profanity filter for this post. Just wanted to let you know ahead of time.
I’ve been a user of Stack Overflow since December of 2008. And I say “user” both in the software sense, and in the drug-addict sense. I’m Jason S, user #44330, and I’m a programming addict. (Hi, Jason S.) The Gravatar, in case you were wondering, is a screen...
Bit-Banged Async Serial Output And Disciplined Engineering
This post covers implementing asynchronous serial output directly on a GPIO with bit-banging. This can be a valuable debug tool for getting information out of a system. It also covers disciplined engineering, using the bit-banging module as an example and template you can apply to other projects.
Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough
Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this series for a while. Fourth installments after a hiatus can bring bad vibes. I mean, look what it did to George Lucas: now we have Star Wars Episode I: The Phantom Menace and
Working with Microchip PIC 8-bit GPIO
The third in a series of five posts looks at GPIO with PIC 8-bit microcontrollers. After a detailed review of the registers for configuring and managing GPIO on the PIC18F47Q10 processor, a basic application is stood up programming those registers to blink external LEDs at 0.5Hz.
Introduction to Microcontrollers - Hello World
Embedded Hello WorldA standard first program on an embedded platform is the blinking LED. Getting an LED to blink demonstrates that you have your toolchain set up correctly, that you are able to download your program code into the μC, and that the μC and associated circuitry (e.g. the power supply) is all working. It can even give you good evidence as to the clock rate that your microcontroller is running (something that trips up a great many people,...
Slew Rate Limiters: Nonlinear and Proud of It!
I first learned about slew rate limits when I was in college. Usually the subject comes up when talking about the nonideal behavior of op-amps. In order for the op-amp output to swing up and down quickly, it has to charge up an internal capacitor with a transistor circuit that’s limited in its current capability. So the slew rate limit \( \frac{dV}{dt} = \frac{I_{\rm max}}{C} \). And as long as the amplitude and frequency aren’t too high, you won’t notice it. But try to...
Coding Step 1 - Hello World and Makefiles
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
Step 0 discussed how to install GCC and the make utility with the expectation of writing and compiling your first C program. In this article, I discuss how to use those tools we installed last time. Specifically, how to use GCC to compile a C program and...
Ten Little Algorithms, Part 4: Topological Sort
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Today we’re going to take a break from my usual focus on signal processing or numerical algorithms, and focus on...
Important Programming Concepts (Even on Embedded Systems) Part II: Immutability
Other articles in this series:
- Part I: Idempotence
- Part III: Volatility
- Part IV: Singletons
- Part V: State Machines
- Part VI: Abstraction
This article will discuss immutability, and some of its variations in the topic of functional programming.
There are a whole series of benefits to using program variables that… well, that aren’t actually variable, but instead are immutable. The impact of...
Arduino robotics #4 - HC-SR04 ultrasonic sensor
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.How to use I2C devices in (Apache) NuttX: Scanning for Devices
Previously in this EmbeddedRelated article, we saw how to use Buttons Subsystem on NuttX using a RaspberryPi Pico board. Now we will change from user input device (buttons) for something more generic: I2C protocol. NuttX supports a lot of I2C devices (sensors, displays, EEPROMs, I/O Expanders, I2C multiplexers, and many more). And most important: because NuttX is a Linux-like RTOS you will find the very familiar i2ctool to search for devices in your I2C bus. So, lets to get...
Embedded Systems Roadmaps
What skills should every embedded systems engineer have? What should you study next to improve yourself as an embedded systems engineer? In this article I'll share with you a few lists from well-respected sources that seek to answer these questions, with the hope of helping provide you a path to mastery. Whether you've only just finished your first Arduino project or you've been building embedded systems for decades, I believe there's something in here for everyone to help improve themselves as embedded systems engineers.
Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of the waveform they were sampled from.
From bare-metal to RTOS: 5 Reasons to use an RTOS
Developers can come up with amazing and convoluted reasons to not use an RTOS. I have heard excuses ranging from they are too expensive (despite open source solutions) all the way to they aren’t efficient and use too much memory. In some circumstances some excuses are justified but there are many reasons why a developer should look to an RTOS to help with their real-time scheduling needs.
From bare-metal to RTOS Quick LinksLinear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...
