
Using GPIO in (Apache) NuttX RTOS
In the previous article (https://embeddedrelated.com/showarticle/1610.php) we saw how to compile and run NuttX on three low cost boards (RaspberryPi Pico, ESP32-Devkit and STM32F4Discovery). Today we will see how to use GPIO pins and read and write logic level signals from/to the MCU pins.
Everybody knows that blinking a LED is the "Hello World" program of embedded system engineer. Controlling a GPIO we can do exactly that! Although it is important to know that NuttX...
A Sneak Peek at the 2024 Embedded Online Conference
The embedded systems industry is evolving at a rapid pace. Just a few years ago, most embedded products were disconnected systems that used bare-metal scheduling techniques. Today, the drive to connect devices and add intelligence at the edge is revolutionizing how we build embedded products. The only way to stay current and not get left behind is to learn and network with colleagues and industry experts continuously.
This year, the 2024 Embedded Online Conference is...
The Asimov Protocol
While the Internet is choke-full of explanations of basic data communication protocols, very little is said about the higher levels of packing, formatting, and exchanging information in a useful and practical way. This less-charted land is still fraught with strange problems, whose solutions may be found in strange places – in this example, a very short, 60 years old Science Fiction story.
Ten Little Algorithms, Part 7: Continued Fraction Approximation
In this article we explore the use of continued fractions to approximate any particular real number, with practical applications.
Embedded Developer’s New Year’s Resolution
As we reach the end of another year, while wrapping up this one, we also contemplate the year ahead. Though nothing major might change on the 1st of January, it’s nice to pause during the holidays to reflect on the past and plan for future improvements.
I like to plan my professional improvements, and I always include them in my New Year’s resolution. Here are some ideas that I’d like to share.
Good Software Design PracticesYes, we Embedded developers love...
Remember Y2K?
There was fear that the turn of the century at the end of 1999 would cause problems with many embedded systems. There is evidence that the same issue may occur in 2038.
Getting Started With Zephyr: Writing Data to EEPROM
In this blog post, I show how to implement a Zephyr application to interact with EEPROM. I show how the Zephyr device driver model allows application writers to be free of the underlying implementation details. Unfortunately, the application didn't work as expected, and I'm still troubleshooting the cause.
My TDD Journey Started Dec 6, 1999
My story of learning Test-Driven Development started 23 years ago today. TDD has helped me exercise my code well before there is target hardware to run on. TDD helps me prevent defects. It can help you too.
More than just a pretty face - a good UI is essential
A user interface can make or break a device - determining its success in the marketplace. With careful design, the UI can make the product compelling and result in a high level of satisfaction from new and experienced users.
Getting Started with NuttX RTOS on Three Low Cost Boards
If you are an embedded system developer chances are you already played with Linux on some embedded board and saw how it is powerful, right?
So, I have a good news: you can have same power using NuttX on some ultra low cost board powered by a microcontroller instead of microprocessor (that normally is way more expansive).
In fact many companies already realized it before me. It explains why NuttX is the kernel used by many IoT frameworks:
Another great news is that few days ago...
Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough
Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this series for a while. Fourth installments after a hiatus can bring bad vibes. I mean, look what it did to George Lucas: now we have Star Wars Episode I: The Phantom Menace and
Use DPLL to Lock Digital Oscillator to 1PPS Signal
IntroductionThere are occasions where it is desirable to lock a digital oscillator to an external time reference such as the 1PPS (One Pulse Per Second) signal output from a GPS receiver. One approach would be to synchronize a fixed frequency oscillator on the leading edge of the 1PPS signal. In many cases, this will result in adequate performance. However, in situations where simple synchronization does not provide adequate performance, digital phase-lock techniques can be applied to a...
You Don't Need an RTOS (Part 2)
In this second article, we'll tweak the simple superloop in three critical ways that will improve it's worst-case response time (WCRT) to be nearly as good as a preemptive RTOS ("real-time operating system"). We'll do this by adding task priorities, interrupts, and finite state machines. Additionally, we'll discuss how to incorporate a sleep mode when there's no work to be done and I'll also share with you a different variation on the superloop that can help schedule even the toughest of task sets.
Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine
Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.
One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...
Bit-Banged Async Serial Output And Disciplined Engineering
This post covers implementing asynchronous serial output directly on a GPIO with bit-banging. This can be a valuable debug tool for getting information out of a system. It also covers disciplined engineering, using the bit-banging module as an example and template you can apply to other projects.
Important Programming Concepts (Even on Embedded Systems) Part V: State Machines
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part VI: Abstraction
Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.
Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...
Second-Order Systems, Part I: Boing!!
I’ve already written about the unexciting (but useful) 1st-order system, and about slew-rate limiting. So now it’s time to cover second-order systems.
The most common second-order systems are RLC circuits and spring-mass-damper systems.
Spring-mass-damper systems are fairly common; you’ve seen these before, whether you realize it or not. One household example of these is the spring doorstop (BOING!!):
(For what it’s worth: the spring...
Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams
Today we're going to talk about data framing and something called COBS, which will make your life easier the next time you use serial communications on an embedded system -- but first, here's a quiz:
Quick Diversion, Part I: Which of the following is the toughest area of electrical engineering? analog circuit design digital circuit design power electronics communications radiofrequency (RF) circuit design electromagnetic...Linear Feedback Shift Registers for the Uninitiated
In 2017 and 2018 I wrote an eighteen-part series of articles about linear feedback shift registers, or LFSRs:
div.jms-article-content ol > li { list-style-type: upper-roman } Ex-Pralite Monks and Finite Fields, in which we describe what an LFSR is as a digital circuit; its cyclic behavior over time; the definition of groups, rings, and fields; the isomorphism between N-bit LFSRs and the field \( GF(2^N) \); and the reason why I wrote this seriesUsing a board with NuttX RTOS as an RS-485 / Modbus Slave Device
Until now we saw how to connect local sensors, actuators and also some kinds of analog devices in our board, but for Industrial application it is very common to use remote devices over some bus, and RS-485 and Modbus (a protocol over physical layer of RS-485) is very common and low cost bus for this kind of application.
And a good thing about RS-485 on NuttX is because you just need an ordinary UART peripheral and a GPIO pin connected to some RS485 transceiver to use it. It means even if...
Introduction to Microcontrollers - More On Interrupts
A Little More Detail About The Interrupt MechanismIt's time to look a little closer at what happens in an interrupt request and response. Again this is in general terms, and different microcontroller designs may do things somewhat differently, but the basics remain the same. Most but not all interrupt requests are latched, which means the interrupt event sets a flag that stays set even if the interrupt event then goes away. It is this latched flag...
Delayed printf for real-time logging
You often debug by adding a few printfs and looking at the logs. In some real-time/low-level contexts though, you don't have time for text formatting.
You don't want prints to affect timing too much, because then timing-related bugs you're chasing might disappear. And you certainly don't want the system to stop functioning altogether because prints cause it to miss real-time deadlines.
A common alternative to prints is more "raw" logging - an event buffer, where event is a union keeping...
Lazy Properties in Python Using Descriptors
This is a bit of a side tangent from my normal at-least-vaguely-embedded-related articles, but I wanted to share a moment of enlightenment I had recently about descriptors in Python. The easiest way to explain a descriptor is a way to outsource attribute lookup and modification.
Python has a bunch of “magic” methods that are hooks into various object-oriented mechanisms that let you do all sorts of ridiculously clever things. Whether or not they’re a good idea is another...
Byte and Switch (Part 2)
In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:
We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...
Two Capacitors Are Better Than One
I was looking for a good reference for some ADC-driving circuits, and ran across this diagram in Walt Jung’s Op-Amp Applications Handbook:
And I smiled to myself, because I immediately remembered a circuit I hadn’t used for years. Years! But it’s something you should file away in your bag of tricks.
Take a look at the RC-RC circuit formed by R1, R2, C1, and C2. It’s basically a stacked RC low-pass filter. The question is, why are there two capacitors?
I...
Use DPLL to Lock Digital Oscillator to 1PPS Signal
IntroductionThere are occasions where it is desirable to lock a digital oscillator to an external time reference such as the 1PPS (One Pulse Per Second) signal output from a GPS receiver. One approach would be to synchronize a fixed frequency oscillator on the leading edge of the 1PPS signal. In many cases, this will result in adequate performance. However, in situations where simple synchronization does not provide adequate performance, digital phase-lock techniques can be applied to a...
Android for Embedded Devices - 5 Reasons why Android is used in Embedded Devices
The embedded purists are going to hate me for this. How can you even think of using Android on an embedded system ? It’s after all a mobile phone operating system/software.
Sigh !! Yes I did not like Android to begin with, as well - for use on an Embedded System. But sometimes I think the market and needs decide what has to be used and what should not be. This is one such thing. Over the past few years, I have learned to love Android as an embedded operating system....
Free Goodies from Embedded World - Full Inventory and Upcoming Draw Live-Streaming Date
Chances are that you already know that I went to Embedded World a few weeks ago and came back with a bag full of "goodies". Initially, my vision was to do a single draw for one person to win it all, but I didn't expect to come back with so much stuff and so many development kits. Based on your feedback, it seems like you guys agree that It wouldn't make sense for one person to win everything as no-one could make good use of all the boards and there would be lots of...
The Least Interesting Circuit in the World
It does nothing, most of the time.
It cannot compute pi. It won’t oscillate. It doesn’t light up.
Often it makes other circuits stop working.
It is… the least interesting circuit in the world.
What is it?
About 25 years ago, I took a digital computer architecture course, and we were each given use of an ugly briefcase containing a bunch of solderless breadboards and a power supply and switches and LEDs — and a bunch of
The habitat of hardware bugs
The Moscow apartment which little me called home was also home to many other creatures, from smallish cockroaches to biggish rats. But of course we rarely met them face to face. Evolution has weeded out those animals imprudent enough to crash your dinner. However, when we moved a cupboard one time, we had the pleasure to meet a few hundreds of fabulously evolved cockroaches.
In this sense, logical bugs aren't different from actual insects. You won't find...
