
Creating a Hardware Abstraction Layer (HAL) in C
In my last post, C to C++: Using Abstract Interfaces to Create Hardware Abstraction Layers (HAL), I discussed how vital hardware abstraction layers are and how to use a C++ abstract interface to create them. You may be thinking, that’s great for C++, but I work in C! How do I create a HAL that can easily swap in and out different drivers? In today’s post, I will walk through exactly how to do that while using the I2C bus as an example.
Elliptic Curve Cryptography - Key Exchange and Signatures
Elliptic curve mathematics over finite fields helps solve the problem of exchanging secret keys for encrypted messages as well as proving a specific person signed a particular document. This article goes over simple algorithms for key exchange and digital signature using elliptic curve mathematics. These methods are the essence of elliptic curve cryptography (ECC) used in applications such as SSH, TLS and HTTPS.
What does it mean to be 'Turing complete'?
The term "Turing complete" describes all computers and even some things we don't expect to be as powerful as a typical computer. In this article, I describe what it means and discuss the implications of Turing completeness on projects that need just a little more power, on alternative processor designs, and even security.
Elliptic Curve Cryptography - Security Considerations
The security of elliptic curve cryptography is determined by the elliptic curve discrete log problem. This article explains what that means. A comparison with real number logarithm and modular arithmetic gives context for why it is called a log problem.
Handling Translations in an Embedded Project
A brief walkthrough on how to handle human language translations in a low level C application. Some options are listed, each with advantages and disadvantages laid out.
Elliptic Curve Cryptography - Basic Math
An introduction to the math of elliptic curves for cryptography. Covers the basic equations of points on an elliptic curve and the concept of point addition as well as multiplication.
Square root in fixed point VHDL
In this blog we will design and implement a fixed point square root function in VHDL. The algorithm is based on the recursive Newton Raphson inverse square root algorithm and the implementation offers parametrizable pipeline depth, word length and the algorithm is built with VHDL records and procedures for easy use.
Mastering Modern FPGA Skills for Engineers
In the rapidly evolving tech industry, engineers must acquire proficiency in modern FPGA skills. These skills empower engineers to optimize designs, minimize resource usage, and efficiently address FPGA design challenges while ensuring functionality, security, and compliance.
Open-Source Licenses Made Easy with Buildroot and Yocto for Embedded Linux
In this article I will try to explain what are the copyrights/copyleft, what are the popular opensource software licenses, and how to make sure that your Embedded Linux system complies with them using popular build systems ; Buildroot or YOCTO projec
There are 10 kinds of people in the world
It is useful, in embedded software, to be able to specify values in binary. The C language lacks this facility. In this blog we look at how to fix that.
Boot Sequence for an ARM based embedded system
Hello all,
Allow me to introduce myself. I am Deeksha and I come from plains of North India. My tryst with embedded technologies has been 5 years long and every single day I am amazed with the vastness and learning involved. The thing with embedded technologies is either you are into it, or you aren't. You cannot just hang around half-heartedly (I guess that holds true for every field, for that matter).You have to keep the learning and sharing process going on. And that is the reason I am...
DSPRelated and EmbeddedRelated now on Facebook & I will be at EE Live!
I have two news to share with you today.
The first one is that I finally created Facebook pages for DSPRelated.com and EmbeddedRelated (DSPRelated page - EmbeddedRelated page). For a long time I didn't feel that this was something that was needed, but it seems that these days more and more people are using their Facebook account to stay updated with their favorite websites. In any event, if you have a Facebook account, I would greatly appreciate if you could use the next 5 seconds to "like"...
PID Without a PhD
I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.
This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...
Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation
Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...
7 Essential Steps for Reducing Power Consumption in Embedded Devices
Reducing the amount of power your embedded device is consuming is not trivial. With so many devices moving to battery operations today, maximizing battery life can be the difference between a happy, raving customer and an unhappy one that ruins your company's reputation. This post explores seven steps for optimizing your embedded systems' power consumption. You'll gain insights into the steps and techniques necessary along with receiving a few resources to help you on your journey.
Zebras Hate You For No Reason: Why Amdahl's Law is Misleading in a World of Cats (And Maybe in Ours Too)
I’ve been wasting far too much of my free time lately on this stupid addicting game called the Kittens Game. It starts so innocently. You are a kitten in a catnip forest. Gather catnip.
And you click on Gather catnip and off you go. Soon you’re hunting unicorns and building Huts and studying Mathematics and Theology and so on. AND IT’S JUST A TEXT GAME! HTML and Javascript, that’s it, no pictures. It’s an example of an
Introduction to Microcontrollers - Hello World
Embedded Hello WorldA standard first program on an embedded platform is the blinking LED. Getting an LED to blink demonstrates that you have your toolchain set up correctly, that you are able to download your program code into the μC, and that the μC and associated circuitry (e.g. the power supply) is all working. It can even give you good evidence as to the clock rate that your microcontroller is running (something that trips up a great many people,...
Data Hiding in C
Strictly speaking, C is not an object-oriented language. Although it provides some features that fit into the object-oriented paradigm it has never had the full object-oriented focus that its successor C++ offers. C++ introduced some very useful concepts and abilities that I miss when I’m developing in ANSI C. One such concept is protected member variables and functions.
When you declare a class in C++ you can also declare member variables and functions as part of that class. Often, these...
On hardware state machines: How to write a simple MAC controller using the RP2040 PIOs
Hardware state machines are nice, and the RP2040 has two blocks with up to four machines each. Their instruction set is limited, but powerful, and they can execute an instruction per cycle, pushing and popping from their FIFOs and shifting bytes in and out. The Raspberry Pi Pico does not have an Ethernet connection, but there are many PHY boards available… take a LAN8720 board and connect it to the Pico; you’re done. The firmware ? Introducing Mongoose…
Short Takes (EE Shanty): What shall we do with a zero-ohm resistor?
In circuit board design you often need flexibility. It can cost hundreds or thousands of dollars to respin a circuit board, so I need flexibility for two main reasons:
- sometimes it's important to be able to use one circuit board design to serve more than one purpose
- risk reduction: I want to give myself the option to add in or leave out certain things when I'm not 100% sure I'll need them.
And so we have jumpers and DIP switches and zero-ohm resistors:
Jumpers and...
Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...
Embedded Systems Roadmaps
What skills should every embedded systems engineer have? What should you study next to improve yourself as an embedded systems engineer? In this article I'll share with you a few lists from well-respected sources that seek to answer these questions, with the hope of helping provide you a path to mastery. Whether you've only just finished your first Arduino project or you've been building embedded systems for decades, I believe there's something in here for everyone to help improve themselves as embedded systems engineers.
Free Goodies from Embedded World - What to Do Next?
I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.
VHDL tutorial - combining clocked and sequential logic
In an earlier article on VHDL programming ("VHDL tutorial" and "VHDL tutorial - part 2 - Testbench", I described a design for providing a programmable clock divider for a ADC sequencer. In this example, I showed how to generate a clock signal (ADCClk), that was to be programmable over a series of fixed rates (20MHz, 10MHz, 4MHz, 2MHz, 1MHz and 400KHz), given a master clock rate of 40MHz. A reader of that article had written to ask if it was possible to extend the design to...
Another 10 Circuit Components You Should Know
It's that time again to review all the oddball goodies available in electronic components. These are things you should have in your bag of tricks when you need to design a circuit board. If you read my previous posts and were looking forward to more, this article's for you!
1. Bus switches
I can't believe I haven't mentioned bus switches before. What is a bus switch?
There are lots of different options for switches:
- mechanical switch / relay: All purpose, two...
Second-Order Systems, Part I: Boing!!
I’ve already written about the unexciting (but useful) 1st-order system, and about slew-rate limiting. So now it’s time to cover second-order systems.
The most common second-order systems are RLC circuits and spring-mass-damper systems.
Spring-mass-damper systems are fairly common; you’ve seen these before, whether you realize it or not. One household example of these is the spring doorstop (BOING!!):
(For what it’s worth: the spring...
Padé Delay is Okay Today
This article is going to be somewhat different in that I’m not really writing it for the typical embedded systems engineer. Rather it’s kind of a specialized topic, so don’t be surprised if you get bored and move on to something else. That’s fine by me.
Anyway, let’s just jump ahead to the punchline. Here’s a numerical simulation of a step response to a \( p=126, q=130 \) Padé approximation of a time delay:
Impressed? Maybe you should be. This...
Digital PLL's -- Part 2
In Part 1, we found the time response of a 2nd order PLL with a proportional + integral (lead-lag) loop filter. Now let’s look at this PLL in the Z-domain [1, 2]. We will find that the response is characterized by a loop natural frequency ωn and damping coefficient ζ.
Having a Z-domain model of the DPLL will allow us to do three things:
Compute the values of loop filter proportional gain KL and integrator gain KI that give the desired loop natural...Modern C++ in Embedded Development: (Don't Fear) The ++
While C is still the language of choice for embedded development, the adoption of C++ has grown steadily. Yet, reservations about dynamic memory allocation and fears of unnecessary code bloat have kept many in the C camp. This discourse aims to explore the intricacies of employing C++ in embedded systems, negotiating the issues of dynamic memory allocation, and exploiting the benefits of C++ offerings like std::array and constexpr. Moreover, it ventures into the details of the zero-overhead principle and the nuanced distinctions between C and C++. The takeaway? Armed with the right knowledge and a careful approach, C++ can indeed serve as a powerful, safer, and more efficient tool for embedded development.
Cortex-M Exception Handling (Part 2)
The first part of this article described the conditions for an exception request to be accepted by a Cortex-M processor, mainly concerning the relationship of its priority with respect to the current execution priority. This part will describe instead what happens after an exception request is accepted and becomes active.
PROCESSOR OPERATION AND PRIVILEGE MODEBefore discussing in detail the sequence of actions that occurs within the processor after an exception request...
