Scorchers, Part 3: Bare-Metal Concurrency With Double-Buffering and the Revolving Fireplace
This is a short article about one technique for communicating between asynchronous processes on bare-metal embedded systems.
Q: Why did the multithreaded chicken cross the road?
A: to To other side. get the
There are many reasons why concurrency is
Absolute Beginner's Guide To Getting Started With Raspberry Pi
Contents:- Introduction
- Simplifications
- Decisions
- The Raspberry Pi
- Parts: What You Need
- Suppliers: Where To Order
- Shopping Lists: What To Order
Make Hardware Great Again
By now you're aware of the collective angst in the US about 5G. Why is the US not a leader in 5G ? Could that also happen -- indeed, is it happening -- in AI ? If we lead in other areas, why not 5G ? What makes it so hard ?
This hand-wringing has reached the highest levels in US government. Recently the Wall Street Journal reported on a DoJ promoted plan 1 to help Cisco buy Ericsson or Nokia, to give the US a leg up in 5G. This is not a new plan,...
Tolerance Analysis
Today we’re going to talk about tolerance analysis. This is a topic that I have danced around in several previous articles, but never really touched upon in its own right. The closest I’ve come is Margin Call, where I discussed several different techniques of determining design margin, and ran through some calculations to justify that it was safe to allow a certain amount of current through an IRFP260N MOSFET.
Tolerance analysis...
The Self-Directed Virtual Internship
A number of my LinkedIn connections are college and university students at the bachelor's, master's, and doctoral levels, from all over the world. The embedded systems community constantly amazes me.
One fallout they're experiencing from COVID19 is cancellation of summer internships. This is very unfortunate, because an internship represents maintaining educational momentum and preparing for launch of a career with a taste of the real working world, along with some financial...
Simple Automated Log Processing
Text log data offers a wealth of information from an embedded system. At least during prototyping and development phases, most systems have some kind of serial log output, or use semihosting methods to log to a serial output channel in a debugger. Then you can capture the logs to a file.
The problem is that they tend to accumulate large volumes of data. Logs can be many thousands of lines long, especially when you run long duration tests. Finding information and evaluating trends in the...
Scorchers, Part 2: Unknown Bugs and Popcorn
This is a short article about diminishing returns in the context of software releases.
Those of you who have been working professionally on software or firmware have probably faced this dilemma before. The scrum masters of the world will probably harp on terms like the Definition of Done and the Minimum Viable Product. Blah blah blah. In simple terms, how do you know when your product is ready to release? This is both an easy and a difficult question to answer.
What makes...
Some Advice For Working From Home
The other day I posted a short video of my WFH setup (and here's a May 1st upgrade). Today I have some general advice for WFH for people who are new to it.
I've been doing it randomly for the past 5 years, usually just one or two days a week here and there. Now it's a full-time thing for the duration of the coronavirus. So some of this wanders afield a bit, settling in for the long haul.
Some of it is based on things I've built up over years. It's unreasonable to expect that...
UML Statechart tip: Handling errors when entering a state
This is my second post with advice and tips on designing software with UML statecharts. My first entry is here.
It has been nearly 20 years since I first studied UML statecharts. Since that initial exposure (thank you Samek!), I have applied event driven active object statechart designs to numerous projects [3]. Nothing has abated my preference for this pattern in my firmware and embedded software projects. Through the years I have taken note of a handful of common challenges when...
Examining The Stack For Fun And Profit
Well, maybe not so much for profit, but certainly for fun. This is a wandering journey of exploration and discovery, learning a variety of interesting and useful things.
One of the concerns with an embedded system is how much memory it needs, known as the memory footprint. This consists of the persistent storage needed for the program (i.e. the flash memory or filesystem space that stores the executable image), and the volatile storage needed to hold the data while executing over long...
Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...
VHDL tutorial - A practical example - part 2 - VHDL coding
In part 1 of this series we focused on the hardware design, including some of the VHDL definitions of the I/O characteristics of the CPLD part. In part 2, we will describe the VHDL logic of the CPLD for this design.
With any design, the first step to gather the requirements for the job at hand. From part 1 of this article, I have copied two sections that address some of the requirements for the CPLD design.
The data acquisition engine has the...
Second-Order Systems, Part I: Boing!!
I’ve already written about the unexciting (but useful) 1st-order system, and about slew-rate limiting. So now it’s time to cover second-order systems.
The most common second-order systems are RLC circuits and spring-mass-damper systems.
Spring-mass-damper systems are fairly common; you’ve seen these before, whether you realize it or not. One household example of these is the spring doorstop (BOING!!):
(For what it’s worth: the spring...
Slew Rate Limiters: Nonlinear and Proud of It!
I first learned about slew rate limits when I was in college. Usually the subject comes up when talking about the nonideal behavior of op-amps. In order for the op-amp output to swing up and down quickly, it has to charge up an internal capacitor with a transistor circuit that’s limited in its current capability. So the slew rate limit \( \frac{dV}{dt} = \frac{I_{\rm max}}{C} \). And as long as the amplitude and frequency aren’t too high, you won’t notice it. But try to...
Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation
Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...
Cortex-M Exception Handling (Part 1)
This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems. The main reason of discussing this topic in detail is that, in the past few years, the degree of sophistication (and complexity) of microcontrollers in handling interrupts steadily increased, bringing them on a par with general-purpose processors.
Introduction to Microcontrollers - Timers
Timers - Because "When" MattersComputer programs are odd things, for one reason because they have no concept of time. They may have the concept of sequential execution, but the time between instructions can be essentially any number and the program won't notice or care (unless assumptions about time have been built into the program by the programmer). But the real world is not like this. In the real world, especially the real embedded world,...
Analog-to-Digital Confusion: Pitfalls of Driving an ADC
Imagine the following scenario:You're a successful engineer (sounds nice, doesn't it!) working on a project with three or four circuit boards. More than even you can handle, so you give one of them over to your coworker Wayne to design. Wayne graduated two years ago from college. He's smart, he's a quick learner, and he's really fast at designing schematics and laying out circuit boards. It's just that sometimes he takes some shortcuts... but in this case the circuit board is just something...
How to Build a Fixed-Point PI Controller That Just Works: Part II
In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:
- various forms and whether to use the canonical form for z-transforms (don't do it!)
- order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
- saturation and anti-windup
In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...
Back from Embedded World 2019 - Funny Stories and Live-Streaming Woes
When the idea of live-streaming parts of Embedded World came to me, I got so excited that I knew I had to make it happen. I perceived the opportunity as a win-win-win-win.
- win #1 - Engineers who could not make it to Embedded World would be able to sample the huge event,
- win #2 - The organisation behind EW would benefit from the extra exposure
- win #3 - Lecturers and vendors who would be live-streamed would reach a (much) larger audience
- win #4 - I would get...
How to Estimate Encoder Velocity Without Making Stupid Mistakes: Part II (Tracking Loops and PLLs)
Yeeehah! Finally we're ready to tackle some more clever ways to figure out the velocity of a position encoder. In part I, we looked at the basics of velocity estimation. Then in my last article, I talked a little about what's necessary to evaluate different kinds of algorithms. Now it's time to start describing them. We'll cover tracking loops and phase-locked loops in this article, and Luenberger observers in part III.
But first we need a moderately simple, but interesting, example...
Introduction to Microcontrollers - More On GPIO
Now that we have our LED Blinky program nailed down, it's time to look more closely at outputs, add button/switch inputs, and work with reading inputs and driving outputs based on those inputs.
It's ON - No, It's OFF - No, It's ON...I have to confess, I cheated. Well, let's say I glossed over something very important. In our LED Blinky program, we never cared about whether an output '1' or an output '0' turned on the LED. Since we were just...
Implementing State Machines
State machines are a great way to design software but they can be difficult to implement well.To illustrate this I’ll develop a simple state machine then increase the complexity to demonstrate some of the difficulties
We’ve all washed dishes before - it’s easy isn’t it? Scrub, rinse, dry, scrub, rinse dry. Scrub the dish until all of the gunk is off of it, rinse until the soap is off, put it in the drying rack. If you want to design software to implement this you have options. You...
Learning Rust For Embedded Systems
The Motivational PortionBased on recommendations from Kevin Nause, the VolksEEG project is considering using Rust as the embedded system programming language. So I've been off on a tear skimming books and e-books and watching videos at 2x to evaluate it.
My conclusion? Do it!
Most of the rest of us participants are primarily C/C++ embedded developers. I had previously been sensitized to Rust for embedded systems by
Unit Tests for Embedded Code
I originate from an electrical engineering background and my first industry experience was in a large, staid defense contractor. Both of these experiences contributed to a significant lack of knowledge with regards to software development best practices. Electrical engineers often have a backwards view of software in general; large defense contractors have similar views of software and couple it with a general disdain for any sort of automation or ‘immature’ practices. While there...
Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough
Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this series for a while. Fourth installments after a hiatus can bring bad vibes. I mean, look what it did to George Lucas: now we have Star Wars Episode I: The Phantom Menace and
Absolute Beginner's Guide To Getting Started With Raspberry Pi
Contents:- Introduction
- Simplifications
- Decisions
- The Raspberry Pi
- Parts: What You Need
- Suppliers: Where To Order
- Shopping Lists: What To Order
PID Without a PhD
I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.
This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...
How to Build a Fixed-Point PI Controller That Just Works: Part II
In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:
- various forms and whether to use the canonical form for z-transforms (don't do it!)
- order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
- saturation and anti-windup
In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...
Digital PLL's -- Part 1
1. IntroductionFigure 1.1 is a block diagram of a digital PLL (DPLL). The purpose of the DPLL is to lock the phase of a numerically controlled oscillator (NCO) to a reference signal. The loop includes a phase detector to compute phase error and a loop filter to set loop dynamic performance. The output of the loop filter controls the frequency and phase of the NCO, driving the phase error to zero.
One application of the DPLL is to recover the timing in a digital...
Blogs Section Now Online!
I am happy to announce that the blog section is now online.
Last week, I sent an email to all the members of EmbeddedRelated.com to ask for embedded systems experts who would be interested in blogging on the site. The response was very positive and I have selected 10 highly qualified individuals who will soon be writing here about all sorts of embedded systems related subjects. I am currently in the process of receiving their info (bio, photo, username, etc) and creating their bloggers'...