
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 2)
Welcome back! Today we’re going to zoom around again in some odd directions, and give a roundabout introduction to the semiconductor industry, touching on some of the following questions:
- How do semiconductors get designed and manufactured?
- What is the business of semiconductor manufacturing like?
- What are the different types of semiconductors, and how does that affect the business model of these manufacturers?
- How has the semiconductor industry evolved over...
Patterns of Thinking: Metaphors in Programming
Several years ago, I once attended an “Object-Oriented Analysis and Design” training. As most such courses go, the instructor began with brushing up on the fundamental OO concepts. When explaining inheritance, the instructor spontaneously compared inheriting from a class to passing traits from parents to the offspring in a family. At first, this “family tree” metaphor seemed to make a lot of sense and most attendees nodded approvingly. However, when the instructor discussed...
New Promo Video for the 2022 Embedded Online Conference
Less than a week to go before the conference! Check out our 2022 Embedded Online Conference promo video, featuring (in order of appearance) Helen Leigh, Peter McLaughlin, Jack Ganssle, Tyler Hoffman, Steve Branam, Colin O'Flynn, Miro Samek, Henk Muller, Jacob Beningo, Harrison Donahue, Kate Stewart, Clive (Max) Maxfield, Don Wilcher, Adam Taylor, and Jean Labrosse.
If you haven't registered for the conference yet, please consider doing so today. Make sure to use the...
2022 Embedded Online Conference - Final Push!
With the Embedded Online Conference only a couple of weeks away, we are now doing a final push to ensure that as many engineers as possible who could benefit from the conference are aware of it.
If you'd like to help us spread the word, not only will you make our day, but you'll also earn a chance to win one of TWO Saleae Logic Pro 8.
Prize: TWO Saleae Logic Pro 8Raffle...Reading and Understanding Profitability Metrics from Financial Statements
Whoa! That has got to be the most serious-minded title I’ve ever written. Profitability Metrics from Financial Statements, indeed. I’m still writing Part 2 of my Supply Chain Games article, and I was about to mention something about whether a company is profitable, when I realized something that didn’t quite fit into the flow of things, so I thought I’d handle it separately: how are you supposed to know what I mean, when I say a company is profitable? And how am I...
A Second Look at Slew Rate Limiters
I recently had to pick a slew rate for a current waveform, and I got this feeling of déjà vu… hadn’t I gone through this effort already? So I looked, and lo and behold, way back in 2014 I wrote an article titled Slew Rate Limiters: Nonlinear and Proud of It! where I explored the effects of two types of slew rate limiters, one feedforward and one feedback, given a particular slew rate \( R \).
Here was one figure I published at the time:
This...
Supply Chain Games: What Have We Learned From the Great Semiconductor Shortage of 2021? (Part 1)
So by now I’m sure you’ve heard about the semiconductor shortage of 2021. For a few complicated reasons, demand is greater than supply, and not everybody who wants to buy integrated circuits can do so. Today we’re going to try to answer some hard questions:
- Why are we in the middle of a semiconductor shortage?
- Why is it taking so long to get my [insert part number here]?
- Did this shortage suddenly sneak up on everybody? If not, what were the signs, and why...
Review: Modern Software Engineering
This is actually a review of 3 books by Dave Farley, because they really form a set:
- Modern Software Engineering: Doing What Works to Build Better Software Faster (just released for 2022, 224 pages)
- Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation (co-authored with Jez Humble, 2011, 463 pages)
- Continuous Delivery Pipelines: How To Build Better Software Faster (2021,...
VolksEEG: Rust Development On Adafruit nRF52840 Feather Express
Contents:Tolerance Analysis
Today we’re going to talk about tolerance analysis. This is a topic that I have danced around in several previous articles, but never really touched upon in its own right. The closest I’ve come is Margin Call, where I discussed several different techniques of determining design margin, and ran through some calculations to justify that it was safe to allow a certain amount of current through an IRFP260N MOSFET.
Tolerance analysis...
Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of the waveform they were sampled from.
Analog-to-Digital Confusion: Pitfalls of Driving an ADC
Imagine the following scenario:You're a successful engineer (sounds nice, doesn't it!) working on a project with three or four circuit boards. More than even you can handle, so you give one of them over to your coworker Wayne to design. Wayne graduated two years ago from college. He's smart, he's a quick learner, and he's really fast at designing schematics and laying out circuit boards. It's just that sometimes he takes some shortcuts... but in this case the circuit board is just something...
Introduction to Microcontrollers - Button Matrix & Auto Repeating
Too Many Buttons, Not Enough InputsAssigning one GPIO input to each button can use up a lot of GPIO pins. Numeric input requires at least 10 buttons, plus however many additional control or function buttons. This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be. A very common response to this expense is to wire buttons (keys, etc) in a matrix. By connecting our buttons in an...
An Iterative Approach to USART HAL Design using ChatGPT
Discover how to leverage ChatGPT and an iterative process to design and generate a USART Hardware Abstraction Layer (HAL) for embedded systems, enhancing code reusability and scalability. Learn the step-by-step journey, improvements made, and the potential for generating HALs for other peripherals.
VHDL tutorial - A practical example - part 2 - VHDL coding
In part 1 of this series we focused on the hardware design, including some of the VHDL definitions of the I/O characteristics of the CPLD part. In part 2, we will describe the VHDL logic of the CPLD for this design.
With any design, the first step to gather the requirements for the job at hand. From part 1 of this article, I have copied two sections that address some of the requirements for the CPLD design.
The data acquisition engine has the...
VHDL tutorial - Creating a hierarchical design
In earlier blog entries I introduced some of the basic VHDL concepts. First, developing a function ('VHDL tutorial') and later verifying and refining it ('VHDL tutorial - part 2 - Testbench' and 'VHDL tutorial - combining clocked and sequential logic'). In this entry I will describe how to...
C to C++: 3 Reasons to Migrate
I’ve recently written several blogs that have set the stage with a simple premise: The C programming language no longer provides embedded software developers the tools they need to develop embedded software throughout the full software stack. Now, don’t get me wrong, C is a powerhouse, with over 80% of developers still using it; however, as embedded systems have reached unprecedented levels of complexity, C might not be the right tool for the job.
In this post, I’m kicking off a series...
Introduction to Microcontrollers - Interrupts
It's Too Soon To Talk About Interrupts!That, at least, could be one reaction to this chapter. But over the years I've become convinced that new microcontroller programmers should understand interrupts before being introduced to any complex peripherals such as timers, UARTs, ADCs, and all the other powerful function blocks found on a modern microcontroller. Since these peripherals are commonly used with interrupts, any introduction to them that does not...
Getting Started with (Apache) NuttX RTOS - Part 1
NuttX RTOS is used in many products from companies like Sony, Xiaomi, Samsung, Google/Fitbit, WildernessLabs and many other companis. So, probably you are already using NuttX even without knowing it, like the you was using Linux on your TV, WiFi router more than 10 years ago and didn't know too! Today you will have the chance to discover a little bit of this fantastic Linux-like RTOS! Are you ready? So, let's get started!
Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference
Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.
Chances are you also already know that you have until the end of the month of February to register for free.
And chances are that you are one of the more than 3000 pro-active engineers who have already registered.
But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet. You may...
From Baremetal to RTOS: A review of scheduling techniques
Transitioning from bare-metal embedded software development to a real-time operating system (RTOS) can be a difficult endeavor. Many developers struggle with the question of whether they should use an RTOS or simply use a bare-metal scheduler. One of the goals of this series is to walk developers through the transition and decision making process of abandoning bare-metal thinking and getting up to speed quickly with RTOSes. Before diving into the details of RTOSes, the appropriate first step...
Introduction to Microcontrollers - Button Matrix & Auto Repeating
Too Many Buttons, Not Enough InputsAssigning one GPIO input to each button can use up a lot of GPIO pins. Numeric input requires at least 10 buttons, plus however many additional control or function buttons. This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be. A very common response to this expense is to wire buttons (keys, etc) in a matrix. By connecting our buttons in an...
Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine
Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.
One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...
Which MOSFET topology?
A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:
From left to right, these are:
High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...BGA and QFP at Home 1 - A Practical Guide.
It is almost universally accepted by the hobbyists that you can't work with high-density packages at home. That is entirely incorrect. I've been assembling and reflowing BGA circuit boards at home for a few years now. BGAs and 0.5mm-pitch QFPs are well within the realm of a determined amateur.
This series of articles presents practical information on designing and assembling boards with high-density packages at home. While the focus is on FPGA packages, most of...
Embedded Toolbox: Programmer's Calculator
Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.
I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...
Introduction to Microcontrollers - 7-segment displays & Multiplexing
Doing the 7 Segment ShuffleThe 7 segment display is ubiquitous in the modern world. Just about every digital clock, calculator and movie bomb has one. The treadmills at my gym have 6 or 7, each one displaying 3 or 4 digits. What makes the 7-seg interesting is that it presents an opportunity to make a trade off between GPIO (output pins) for time. Every 7-seg display requires 8 outputs (the 7 segments and usually either a decimal point or a...
Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part V: State Machines
- Part VI: Abstraction
Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but
Cortex-M Exception Handling (Part 1)
This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems.
