EmbeddedRelated.com

Getting Started With Zephyr: Writing Data to EEPROM

Mohammed Billoo December 6, 20235 comments

In this blog post, I show how to implement a Zephyr application to interact with EEPROM. I show how the Zephyr device driver model allows application writers to be free of the underlying implementation details. Unfortunately, the application didn't work as expected, and I'm still troubleshooting the cause.


My TDD Journey Started Dec 6, 1999

James Grenning December 6, 2023

My story of learning Test-Driven Development started 23 years ago today. TDD has helped me exercise my code well before there is target hardware to run on. TDD helps me prevent defects. It can help you too.


More than just a pretty face - a good UI is essential

Colin Walls November 30, 20231 comment

A user interface can make or break a device - determining its success in the marketplace. With careful design, the UI can make the product compelling and result in a high level of satisfaction from new and experienced users.


Getting Started with NuttX RTOS on Three Low Cost Boards

Alan C Assis November 27, 20238 comments

If you are an embedded system developer chances are you already played with Linux on some embedded board and saw how it is powerful, right?

So, I have a good news: you can have same power using NuttX on some ultra low cost board powered by a microcontroller instead of microprocessor (that normally is way more expansive).

In fact many companies already realized it before me. It explains why NuttX is the kernel used by many IoT frameworks:

Another great news is that few days ago...


Elliptic Curve Cryptography - Multiple Signatures

Mike November 19, 2023

The use of point pairing becomes very useful when many people are required to sign one document. This is typical in a contract situation when several people are agreeing to a set of requirements. If we used the method described in the blog on signatures, each person would sign the document, and then the verification process would require checking every single signature. By using pairings, only one check needs to be performed. The only requirement is the ability to verify the...


Lightweight C++ Error-Codes Handling

Massimiliano Pagani November 16, 20232 comments

The traditional C++ approach to error handling tends to distinguish the happy path from the unhappy path. This makes handling errors hard (or at least boring) to write and hard to read. In this post, I present a technique based on chaining operations that merges the happy and the unhappy paths. Thanks to C++ template and inlining the proposed technique is lightweight and can be used proficiently for embedded software.


Flood Fill, or: The Joy of Resource Constraints

Ido Gendel November 13, 2023

When transferred from the PC world to a microcontroller, a famous, tried-and-true graphics algorithm is no longer viable. The challenge of creating an alternative under severe resource constraints is an intriguing puzzle, the kind that keeps embedded development fun and interesting.


Embedded Systems Roadmaps

Nathan Jones November 9, 2023

What skills should every embedded systems engineer have? What should you study next to improve yourself as an embedded systems engineer? In this article I'll share with you a few lists from well-respected sources that seek to answer these questions, with the hope of helping provide you a path to mastery. Whether you've only just finished your first Arduino project or you've been building embedded systems for decades, I believe there's something in here for everyone to help improve themselves as embedded systems engineers.


Embedded Systems Co-design for Object Recognition: A Synergistic Approach

Charu Pande November 4, 2023

Embedded systems co-design for object recognition is essential for real-time image analysis and environmental sensing across various sectors. This methodology harmonizes hardware and software to optimize efficiency and performance. It relies on hardware accelerators, customized neural network architectures, memory hierarchy optimization, and power management to achieve benefits like enhanced performance, lower latency, energy efficiency, real-time responsiveness, and resource optimization. While challenges exist, co-designed systems find applications in consumer electronics, smart cameras, industrial automation, healthcare, and autonomous vehicles, revolutionizing these industries. As technology advances, co-design will continue to shape the future of intelligent embedded systems, making the world safer and more efficient.


What is Pulse Width Modulation and How Does It Work?

Lance Harvie November 2, 2023

Pulse Width Modulation (PWM) is a technique used to control the average voltage supplied to a device or component by adjusting the width of a series of pulses. It works by rapidly turning a signal on and off at a specific frequency. The crucial element of PWM is the duty cycle, which represents the percentage of time the signal is “on” (high voltage) compared to the total time of one cycle.


How to Build a Fixed-Point PI Controller That Just Works: Part II

Jason Sachs March 24, 20122 comments

In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:

  • various forms and whether to use the canonical form for z-transforms (don't do it!)
  • order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
  • saturation and anti-windup

In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...


PID Without a PhD

Tim Wescott April 26, 201612 comments

I both consult and teach in the area of digital control. Through both of these efforts, I have found that while there certainly are control problems that require all the expertise I can bring to bear, there are a great number of control problems that can be solved with the most basic knowledge of simple controllers, without resort to any formal control theory at all.

This article will tell you how to implement a simple controller in software and how to tune it without getting into heavy...


From Baremetal to RTOS: A review of scheduling techniques

Jacob Beningo June 8, 201617 comments

Transitioning from bare-metal embedded software development to a real-time operating system (RTOS) can be a difficult endeavor. Many developers struggle with the question of whether they should use an RTOS or simply use a bare-metal scheduler. One of the goals of this series is to walk developers through the transition and decision making process of abandoning bare-metal thinking and getting up to speed quickly with RTOSes. Before diving into the details of RTOSes, the appropriate first step...


Development of the MOS Technology 6502: A Historical Perspective

Jason Sachs June 18, 20222 comments

One ubiquitous microprocessor of the late 1970s and 1980s was the MOS Technology MCS 6502. I included a section on the development of the 6502 in Part 2 of Supply Chain Games, and have posted it as an excerpt here, as I believe it is deserving in its own right.

(Note: MOS Technology is pronounced with the individual letters M-O-S “em oh ess”,[1] not “moss”, and should not be confused with another semiconductor company,


Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine

Jason Sachs November 22, 20163 comments

Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.

One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...


Introduction to Microcontrollers - Button Matrix & Auto Repeating

Mike Silva November 12, 2013

Too Many Buttons, Not Enough Inputs

Assigning one GPIO input to each button can use up a lot of GPIO pins.  Numeric input requires at least 10 buttons, plus however many additional control or function buttons.  This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be.  A very common response to this expense is to wire buttons (keys, etc) in a matrix.  By connecting our buttons in an...


Which MOSFET topology?

Jason Sachs September 1, 20119 comments

A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:

From left to right, these are:

High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...

BGA and QFP at Home 1 - A Practical Guide.

Victor Yurkovsky October 13, 20134 comments

It is almost universally accepted by the hobbyists that you can't work with high-density packages at home.  That is entirely incorrect.  I've been assembling and reflowing BGA circuit boards at home for a few years now.  BGAs and 0.5mm-pitch QFPs are well within the realm of a determined amateur. 

This series of articles presents practical information on designing and assembling boards with high-density packages at home.  While the focus is on FPGA packages, most of...


Embedded Toolbox: Programmer's Calculator

Miro Samek June 27, 20178 comments

Like any craftsman, I have accumulated quite a few tools during my embedded software development career. Some of them proved to me more useful than others. And these generally useful tools ended up in my Embedded Toolbox. In this blog, I'd like to share some of my tools with you. Today, I'd like to start with my cross-platform Programmer's Calculator called QCalc.

I'm sure that you already have your favorite calculator online or on your smartphone. But can your calculator accept...