Free Goodies from Embedded World - Full Inventory and Upcoming Draw Live-Streaming Date
Chances are that you already know that I went to Embedded World a few weeks ago and came back with a bag full of "goodies". Initially, my vision was to do a single draw for one person to win it all, but I didn't expect to come back with so much stuff and so many development kits. Based on your feedback, it seems like you guys agree that It wouldn't make sense for one person to win everything as no-one could make good use of all the boards and there would be lots of...
AI at the Edge - Can I run a neural network in a resource-constrained device?
Hello Related Communities,
This is my first time blogging since joining Stephane in November. He and I were at Embedded World together and he asked me to write about some of the important trends as they relate to all of you. I expect to post others in the near future, but the biggest trend in the embedded space was all of the activity around artificial intelligence (AI) at the edge.
This trend caught me a bit by surprise. I have been doing a lot of reading about AI over the last...
Free Goodies from Embedded World - What to Do Next?
I told you I would go on a hunt for free stuff at Embedded World in order to build a bundle for someone to win.
Back from Embedded World 2019 - Funny Stories and Live-Streaming Woes
When the idea of live-streaming parts of Embedded World came to me, I got so excited that I knew I had to make it happen. I perceived the opportunity as a win-win-win-win.
- win #1 - Engineers who could not make it to Embedded World would be able to sample the huge event,
- win #2 - The organisation behind EW would benefit from the extra exposure
- win #3 - Lecturers and vendors who would be live-streamed would reach a (much) larger audience
- win #4 - I would get...
Spread the Word and Run a Chance to Win a Bundle of Goodies from Embedded World
Do you have a Twitter and/or Linkedin account?
If you do, please consider paying close attention for the next few days to the EmbeddedRelated Twitter account and to my personal Linkedin account (feel free to connect). This is where I will be posting lots of updates about how the EmbeddedRelated.tv live streaming experience is going at Embedded World.
The most successful this live broadcasting experience will be, the better the chances that I will be able to do it...
Launch of EmbeddedRelated.tv
With the upcoming Embedded Word just around the corner, I am very excited to launch the EmbeddedRelated.tv platform.
This is where you will find the schedule for all the live broadcasts that I will be doing from Embedded World next week. Please note that the schedule will be evolving constantly, even during the show, so I suggest your refresh the page often. For instance, I am still unsure if I will be able to do the 'opening of the doors' broadcast as...
Live Streaming from Embedded World!
For those of you who won't be attending Embedded World this year, I will try to be your eyes and ears by video streaming live from the show floor.
I am not talking improvised streaming from a phone, but real, high quality HD streaming with a high-end camera and a device that will bond three internet connections (one wifi and two cellular) to ensure a steady, and hopefully reliable, stream. All this to hopefully give those of you who cannot be there in person a virtual...
Embedded Programming Video Course Teaches RTOS
If you'd like to understand how a Real-Time Operating System (RTOS) really works, here is a free video course for you:
RTOS part-1: In this first lesson on RTOS you will see how to extend the foreground/background architecture from the previous lesson, so that you can have multiple background loops running seemingly simultaneously.:
RTOS part-2: In this second lesson on RTOS you will see how to automate the context switch process. Specifically, in this lesson, you will start building...
The Hardest Bug I Never Solved
I agreed to four hours.
Four hours to help hunt down and kill a bug. A terrible malicious bug that was eating away at this project, wreaking havoc upon the foundations of a critical feature, and draining time randomly from every one of eight firmware engineers on this project. Quite honestly, I can’t remember the last time it took more than an hour or two for me to locate, isolate, and fix a firmware bug. Surely I could help find and solve this issue within four...
C++ on microcontrollers 1 - introduction, and an output pin class
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
I am lazy. I am also a programmer. Luckily, being a lazy...
Introduction to Microcontrollers - Hello World
Embedded Hello WorldA standard first program on an embedded platform is the blinking LED. Getting an LED to blink demonstrates that you have your toolchain set up correctly, that you are able to download your program code into the μC, and that the μC and associated circuitry (e.g. the power supply) is all working. It can even give you good evidence as to the clock rate that your microcontroller is running (something that trips up a great many people,...
Metal detection: beat frequency oscillator
Plan Introduction Theory Electronics Software Tests ReferencesNext part: building the detector 1. IntroductionThis article discusses the implementation of a beat frequency oscillator (BFO) stage for metal detector. While they are mentioned here and there, the article does not detail other important electronic stages such as the power supply, and user interface, the coil or the detector frame. I may write other articles on these topics, and other detection methods.Before...
Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...
Second-Order Systems, Part I: Boing!!
I’ve already written about the unexciting (but useful) 1st-order system, and about slew-rate limiting. So now it’s time to cover second-order systems.
The most common second-order systems are RLC circuits and spring-mass-damper systems.
Spring-mass-damper systems are fairly common; you’ve seen these before, whether you realize it or not. One household example of these is the spring doorstop (BOING!!):
(For what it’s worth: the spring...
Free Goodies from Embedded World - Full Inventory and Upcoming Draw Live-Streaming Date
Chances are that you already know that I went to Embedded World a few weeks ago and came back with a bag full of "goodies". Initially, my vision was to do a single draw for one person to win it all, but I didn't expect to come back with so much stuff and so many development kits. Based on your feedback, it seems like you guys agree that It wouldn't make sense for one person to win everything as no-one could make good use of all the boards and there would be lots of...
Digital PLL's -- Part 2
In Part 1, we found the time response of a 2nd order PLL with a proportional + integral (lead-lag) loop filter. Now let’s look at this PLL in the Z-domain [1, 2]. We will find that the response is characterized by a loop natural frequency ωn and damping coefficient ζ.
Having a Z-domain model of the DPLL will allow us to do three things:
Compute the values of loop filter proportional gain KL and integrator gain KI that give the desired loop natural...Designing Communication Protocols, Practical Aspects
For most embedded developers always comes the time when they have to make their embedded MCU talk to another system. That other system will be a PC or a different embedded system or a smartphone etc. For the purpose of this article I am assuming that we are in the control of the protocol between the two ends and we don’t have to follow something that is already in place on one side.
So let’s say that we have our embedded MCU, we have implemented and configured the USB stack (or just...
Using the C language to program the am335x PRU
IntroductionSome weeks ago, I published an article on how we used the PRU to implement a power supply control loop having hard realtime constraints:
//www.embeddedrelated.com/showarticle/586.php
Writing this kind of logic in assembly language is not easy. First the assembly language itself may be difficult to learn depending on your background. Then, fixed and floating point arithmetics require lot of code. While macros help to handle the complexity, they still are error prone as you...
Fluxions for Fun and Profit: Euler, Trapezoidal, Verlet, or Runge-Kutta?
Today we're going to take another diversion from embedded systems, and into the world of differential equations, modeling, and computer simulation.
DON'T PANIC!First of all, just pretend I didn't bring up anything complicated. We're exposed to the effects of differential equations every day, whether we realize it or not. Your car speedometer and odometer are related by a differential equation, and whether you like math or not, you probably have some comprehension of what's going on: you...
Implementing State Machines
State machines are a great way to design software but they can be difficult to implement well.To illustrate this I’ll develop a simple state machine then increase the complexity to demonstrate some of the difficulties
We’ve all washed dishes before - it’s easy isn’t it? Scrub, rinse, dry, scrub, rinse dry. Scrub the dish until all of the gunk is off of it, rinse until the soap is off, put it in the drying rack. If you want to design software to implement this you have options. You...
How to Build a Fixed-Point PI Controller That Just Works: Part II
In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:
- various forms and whether to use the canonical form for z-transforms (don't do it!)
- order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
- saturation and anti-windup
In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...
Which MOSFET topology?
A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:
From left to right, these are:
High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...Absolute Beginner's Guide To Getting Started With Raspberry Pi
Contents:- Introduction
- Simplifications
- Decisions
- The Raspberry Pi
- Parts: What You Need
- Suppliers: Where To Order
- Shopping Lists: What To Order
Introduction to Microcontrollers - Button Matrix & Auto Repeating
Too Many Buttons, Not Enough InputsAssigning one GPIO input to each button can use up a lot of GPIO pins. Numeric input requires at least 10 buttons, plus however many additional control or function buttons. This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be. A very common response to this expense is to wire buttons (keys, etc) in a matrix. By connecting our buttons in an...
Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine
Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.
One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...
Introduction to Microcontrollers - 7-segment displays & Multiplexing
Doing the 7 Segment ShuffleThe 7 segment display is ubiquitous in the modern world. Just about every digital clock, calculator and movie bomb has one. The treadmills at my gym have 6 or 7, each one displaying 3 or 4 digits. What makes the 7-seg interesting is that it presents an opportunity to make a trade off between GPIO (output pins) for time. Every 7-seg display requires 8 outputs (the 7 segments and usually either a decimal point or a...
Important Programming Concepts (Even on Embedded Systems) Part IV: Singletons
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part V: State Machines
- Part VI: Abstraction
Today’s topic is the singleton. This article is unique (pun intended) in that unlike the others in this series, I tried to figure out a word to use that would be a positive concept to encourage, as an alternative to singletons, but
Android for Embedded Devices - 5 Reasons why Android is used in Embedded Devices
The embedded purists are going to hate me for this. How can you even think of using Android on an embedded system ? It’s after all a mobile phone operating system/software.
Sigh !! Yes I did not like Android to begin with, as well - for use on an Embedded System. But sometimes I think the market and needs decide what has to be used and what should not be. This is one such thing. Over the past few years, I have learned to love Android as an embedded operating system....
Arduino robotics #4 - HC-SR04 ultrasonic sensor
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.