
How to Read a Power MOSFET Datasheet
One of my pet peeves is when my fellow engineers misinterpret component datasheets. This happened a few times recently in separate instances, all involving power MOSFETs. So it’s time for me to get on my soapbox. Listen up!
I was going to post an article on how to read component datasheets in general. But MOSFETs are a good place to start, and are a little more specific. I’m not the first person to write something about how to read datasheets; here are some other good...
Coding Step 3 - High-Level Requirements
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2- Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
If this series of articles has been light on one thing it's 'coding'. If it's been light on two things the second is 'embedded'. In three articles I haven't gotten past Hello World on a desktop PC. That changes (slowly) with this article. In this article I'll...
Coding Step 2 - Source Control
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
When I first started out in programming, version control was not an introductory topic. Not in the least because it required a 'server' (ie, a computer which a teenaged me couldn't afford) but because it seemed difficult and only useful to teams rather than...
Coding Step 1 - Hello World and Makefiles
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
Step 0 discussed how to install GCC and the make utility with the expectation of writing and compiling your first C program. In this article, I discuss how to use those tools we installed last time. Specifically, how to use GCC to compile a C program and...
Coding - Step 0: Setting Up a Development Environment
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
You can easily find a million articles out there discussing compiler nuances, weighing the pros and cons of various data structures or discussing the optimization of databases. Those sorts of articles are fascinating reads for advanced programmers but...
Introduction to Microcontrollers - 7-segment displays & Multiplexing
Doing the 7 Segment ShuffleThe 7 segment display is ubiquitous in the modern world. Just about every digital clock, calculator and movie bomb has one. The treadmills at my gym have 6 or 7, each one displaying 3 or 4 digits. What makes the 7-seg interesting is that it presents an opportunity to make a trade off between GPIO (output pins) for time. Every 7-seg display requires 8 outputs (the 7 segments and usually either a decimal point or a...
How to make a heap profiler
We'll see how to make a heap profiler. Example code for this post makes up heapprof, a working 250-line heap profiler for programs using malloc/free.
It works out of the box on Linux (tested on "real" programs like gdb and python). The main point though is being easy to port and modify to suit your needs. The code, build and test scripts are at github.
Why roll your own heap profiler?
- It's easy! And fun, if you're that sort of person. What, not reasons enough? OK, how...
Lost Secrets of the H-Bridge, Part IV: DC Link Decoupling and Why Electrolytic Capacitors Are Not Enough
Those of you who read my earlier articles about H-bridges, and followed them closely, have noticed there's some unfinished business. Well, here it is. Just so you know, I've been nervous about writing the fourth (and hopefully final) part of this series for a while. Fourth installments after a hiatus can bring bad vibes. I mean, look what it did to George Lucas: now we have Star Wars Episode I: The Phantom Menace and
Unit Tests for Embedded Code
I originate from an electrical engineering background and my first industry experience was in a large, staid defense contractor. Both of these experiences contributed to a significant lack of knowledge with regards to software development best practices. Electrical engineers often have a backwards view of software in general; large defense contractors have similar views of software and couple it with a general disdain for any sort of automation or ‘immature’ practices. While there...
Implementing State Machines
State machines are a great way to design software but they can be difficult to implement well.To illustrate this I’ll develop a simple state machine then increase the complexity to demonstrate some of the difficulties
We’ve all washed dishes before - it’s easy isn’t it? Scrub, rinse, dry, scrub, rinse dry. Scrub the dish until all of the gunk is off of it, rinse until the soap is off, put it in the drying rack. If you want to design software to implement this you have options. You...
How to Build a Fixed-Point PI Controller That Just Works: Part II
In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:
- various forms and whether to use the canonical form for z-transforms (don't do it!)
- order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
- saturation and anti-windup
In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...
Cortex-M Exception Handling (Part 1)
This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems.
Getting Started With Zephyr: Devicetrees
This blog post provides an introduction to the "Devicetree", another unique concept in The Zephyr Project. We learn about the basic syntax of a device tree and how its structure and hierarchy mirror hardware, from the SoC to the final board. We also see how hardware described in a devicetree can be referenced and controlled in the source code of a Zephyr-based application.
On hardware state machines: How to write a simple MAC controller using the RP2040 PIOs
Hardware state machines are nice, and the RP2040 has two blocks with up to four machines each. Their instruction set is limited, but powerful, and they can execute an instruction per cycle, pushing and popping from their FIFOs and shifting bytes in and out. The Raspberry Pi Pico does not have an Ethernet connection, but there are many PHY boards available… take a LAN8720 board and connect it to the Pico; you’re done. The firmware ? Introducing Mongoose…
nRF5 to nRF Connect SDK migration via DFU over BLE
This writeup contains some notes on how I was able to migrate one of my clients projects based on the nRF5 SDK, to nRF Connect SDK (NCS) based firmware, via a DFU to devices in the field over BLE.
Practical CRCs for Embedded Systems
CRCs are a very practical tool for embedded systems: you're likely to need to use one as part of a communications protocol or to verify the integrity of a program image before writing it to flash. But CRCs can be difficult to understand and tricky to implement. The first time I attempted to write CRC code from scratch I failed once. Then twice. Then three times. Eventually I gave up and used an existing library. I consider myself intelligent: I got A's...
C++ on microcontrollers 1 - introduction, and an output pin class
This blog series is about the use of C++ for modern microcontrollers. My plan is to show the gradual development of a basic I/O library. I will introduce the object-oriented C++ features that are used step by step, to provide a gentle yet practical introduction into C++ for C programmers. Reader input is very much appreciated, you might even steer me in the direction you find most interesting.
I am lazy. I am also a programmer. Luckily, being a lazy...
Coding Step 1 - Hello World and Makefiles
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
Step 0 discussed how to install GCC and the make utility with the expectation of writing and compiling your first C program. In this article, I discuss how to use those tools we installed last time. Specifically, how to use GCC to compile a C program and...
Introduction to Microcontrollers - More On Interrupts
A Little More Detail About The Interrupt MechanismIt's time to look a little closer at what happens in an interrupt request and response. Again this is in general terms, and different microcontroller designs may do things somewhat differently, but the basics remain the same. Most but not all interrupt requests are latched, which means the interrupt event sets a flag that stays set even if the interrupt event then goes away. It is this latched flag...
Implementing State Machines
State machines are a great way to design software but they can be difficult to implement well.To illustrate this I’ll develop a simple state machine then increase the complexity to demonstrate some of the difficulties
We’ve all washed dishes before - it’s easy isn’t it? Scrub, rinse, dry, scrub, rinse dry. Scrub the dish until all of the gunk is off of it, rinse until the soap is off, put it in the drying rack. If you want to design software to implement this you have options. You...
Introduction to Microcontrollers - Button Matrix & Auto Repeating
Too Many Buttons, Not Enough InputsAssigning one GPIO input to each button can use up a lot of GPIO pins. Numeric input requires at least 10 buttons, plus however many additional control or function buttons. This can quickly get expensive, GPIO pin-wise, and also connector-wise if the keypad is off the uC PCB as it often would be. A very common response to this expense is to wire buttons (keys, etc) in a matrix. By connecting our buttons in an...
Which MOSFET topology?
A recent electronics.StackExchange question brings up a good topic for discussion. Let's say you have a power supply and a 2-wire load you want to be able to switch on and off from the power supply using a MOSFET. How do you choose which circuit topology to choose? You basically have four options, shown below:
From left to right, these are:
High-side switch, N-channel MOSFET High-side switch, P-channel MOSFET Low-side switch, N-channel...Cortex-M Exception Handling (Part 1)
This article describes how Cortex-M processors handle interrupts and, more generally, exceptions, a concept that plays a central role in the design and implementation of most embedded systems.
Introduction to Microcontrollers - 7-segment displays & Multiplexing
Doing the 7 Segment ShuffleThe 7 segment display is ubiquitous in the modern world. Just about every digital clock, calculator and movie bomb has one. The treadmills at my gym have 6 or 7, each one displaying 3 or 4 digits. What makes the 7-seg interesting is that it presents an opportunity to make a trade off between GPIO (output pins) for time. Every 7-seg display requires 8 outputs (the 7 segments and usually either a decimal point or a...
VHDL tutorial - A practical example - part 1 - Hardware
In previous posts I described some simple VHDL examples. This time let's try something a little more complex. This is part one of a multiple part article. This is intended to be a detailed description of one of several initial designs that I developed for a client. This design never made it into a product, but a similar design was used and is currently being produced. As a considerable amount of work was put into this effort, I decided to share this design...
Introduction to Microcontrollers - More On Interrupts
A Little More Detail About The Interrupt MechanismIt's time to look a little closer at what happens in an interrupt request and response. Again this is in general terms, and different microcontroller designs may do things somewhat differently, but the basics remain the same. Most but not all interrupt requests are latched, which means the interrupt event sets a flag that stays set even if the interrupt event then goes away. It is this latched flag...
Coding Step 1 - Hello World and Makefiles
Articles in this series:
- Coding Step 0 - Development Environments
- Coding Step 1 - Hello World and Makefiles
- Coding Step 2 - Source Control
- Coding Step 3 - High-Level Requirements
- Coding Step 4 - Design
Step 0 discussed how to install GCC and the make utility with the expectation of writing and compiling your first C program. In this article, I discuss how to use those tools we installed last time. Specifically, how to use GCC to compile a C program and...
Arduino robotics #4 - HC-SR04 ultrasonic sensor
Arduino RoboticsArduino robotics is a series of article chronicling my first autonomous robot build, Clusterbot. This build is meant to be affordable, relatively easy and instructive. The total cost of the build is around $50.
1. Arduino robotics - motor control2. Arduino robotics - chassis, locomotion and power3. Arduino robotics - wiring, coding and a test run4.C Programming Techniques: Function Call Inlining
IntroductionAbstraction is a key to manage software systems as they increase in size and complexity. As shown in a previous post, abstraction requires a developper to clearly define a software interface for both data and functions, and eventually hide the underlying implementation.When using the C language, the interface is often exposed in a header '.h' file, while the implementation is put in one or more corresponding '.c' files.
First, separating an interface from its...
VHDL tutorial - combining clocked and sequential logic
In an earlier article on VHDL programming ("VHDL tutorial" and "VHDL tutorial - part 2 - Testbench", I described a design for providing a programmable clock divider for a ADC sequencer. In this example, I showed how to generate a clock signal (ADCClk), that was to be programmable over a series of fixed rates (20MHz, 10MHz, 4MHz, 2MHz, 1MHz and 400KHz), given a master clock rate of 40MHz. A reader of that article had written to ask if it was possible to extend the design to...
