
The Self-Directed Virtual Internship
A number of my LinkedIn connections are college and university students at the bachelor's, master's, and doctoral levels, from all over the world. The embedded systems community constantly amazes me.
One fallout they're experiencing from COVID19 is cancellation of summer internships. This is very unfortunate, because an internship represents maintaining educational momentum and preparing for launch of a career with a taste of the real working world, along with some financial...
Simple Automated Log Processing
Text log data offers a wealth of information from an embedded system. At least during prototyping and development phases, most systems have some kind of serial log output, or use semihosting methods to log to a serial output channel in a debugger. Then you can capture the logs to a file.
The problem is that they tend to accumulate large volumes of data. Logs can be many thousands of lines long, especially when you run long duration tests. Finding information and evaluating trends in the...
Scorchers, Part 2: Unknown Bugs and Popcorn
This is a short article about diminishing returns in the context of software releases.
Those of you who have been working professionally on software or firmware have probably faced this dilemma before. The scrum masters of the world will probably harp on terms like the Definition of Done and the Minimum Viable Product. Blah blah blah. In simple terms, how do you know when your product is ready to release? This is both an easy and a difficult question to answer.
What makes...
Some Advice For Working From Home
The other day I posted a short video of my WFH setup (and here's a May 1st upgrade). Today I have some general advice for WFH for people who are new to it.
I've been doing it randomly for the past 5 years, usually just one or two days a week here and there. Now it's a full-time thing for the duration of the coronavirus. So some of this wanders afield a bit, settling in for the long haul.
Some of it is based on things I've built up over years. It's unreasonable to expect that...
UML Statechart tip: Handling errors when entering a state
This is my second post with advice and tips on designing software with UML statecharts. My first entry is here.
It has been nearly 20 years since I first studied UML statecharts. Since that initial exposure (thank you Samek!), I have applied event driven active object statechart designs to numerous projects [3]. Nothing has abated my preference for this pattern in my firmware and embedded software projects. Through the years I have taken note of a handful of common challenges when...
Examining The Stack For Fun And Profit
Well, maybe not so much for profit, but certainly for fun. This is a wandering journey of exploration and discovery, learning a variety of interesting and useful things.
One of the concerns with an embedded system is how much memory it needs, known as the memory footprint. This consists of the persistent storage needed for the program (i.e. the flash memory or filesystem space that stores the executable image), and the volatile storage needed to hold the data while executing over long...
Already 3000+ Attendees Registered for the Upcoming Embedded Online Conference
Chances are you already know, through the newsletter or banners on the Related sites, about the upcoming Embedded Online Conference.
Chances are you also already know that you have until the end of the month of February to register for free.
And chances are that you are one of the more than 3000 pro-active engineers who have already registered.
But If you are like me and have a tendency to do tomorrow what can be done today, maybe you haven't registered yet. You may...
So You Want To Be An Embedded Systems Developer
Contents:- Introduction
- What's An Embedded System?
- Hobbyist vs. Professional Hardware
- The Primary Resources
- Some Advanced Resources
- Some Hardware
- Glossaries
- Other Links
- Final Thought
Racing to Sleep
Today we’re going to talk about low-power design.
Suppose I’m an electrical engineer working with wildlife biologists who are gathering field data on the Saskatchewan ringed-neck mountain goat. My team has designed a device called the BigBrotherBear 2000 (BBB2000) with a trip cable and a motor and a camera and a temperature sensor and a hot-wire anemometer and a real-time clock and an SD card and a battery and a LoRa transceiver. The idea is something like...
Jaywalking Around the Compiler
Our team had another code review recently. I looked at one of the files, and bolted upright in horror when I saw a function that looked sort of like this:
void some_function(SOMEDATA_T *psomedata) { asm volatile("push CORCON"); CORCON = 0x00E2; do_some_other_stuff(psomedata); asm volatile("pop CORCON"); }There is a serious bug here — do you see what it is?
Watchdog Timer Anti-patterns
The humble watchdog timer has been an essential part of our reliability tool chest for decades now. The way it works is straightforward and easy to understand, and most practical designs are easy to interface with.
There is a wealth of reference material that covers both the theory behind watchdog timers and practical design tips. But what we'll talk about today is of a slightly different nature.
Despite its straightforward operation and long history, the watchdog timer does occasionally get...
Lost Secrets of the H-Bridge, Part II: Ripple Current in the DC Link Capacitor
In my last post, I talked about ripple current in inductive loads.
One of the assumptions we made was that the DC link was, in fact, a DC voltage source. In reality that's an approximation; no DC voltage source is perfect, and current flow will alter the DC link voltage. To analyze this, we need to go back and look at how much current actually is being drawn from the DC link. Below is an example. This is the same kind of graph as last time, except we added two...
Get Involved: Contribute Quiz Questions for the Embedded Systems Community for a Chance to Win a LAP-C Pro!
Submit a Quiz Question for a chance to win a Zeroplus Lac-C Pro!
Using XML to describe embedded devices (and speak to them)
This article discusses one of the typical development cycles in embedded device and communication design and presents a possible, light weight solution using the free DClib/netpp framework.
The challengeAssume we're faced with the design of an embedded device, be it a simple SoC unit or a more complex, uC controlled engine with various attached peripherals. From first prototype to the market, the following development cycle is typically walked through:
Simulating Your Embedded Project on Your Computer (Part 2)
Having a simulation of your embedded project is like having a superpower that improves the quality and pace of your development ten times over! To be useful, though, it can't take longer to develop the simulation than it takes to develop the application code and for many simulation techniques "the juice isn't worth the squeeze"! In the last article, I showed you how to use the terminal (i.e. printf/getchar) to easily make a completely functional simulation. In this article, we'll take simulation to the next level, either in terms of realism (by using virtual hardware) or in terms of user experience (by using a GUI to simulate our hardware, instead of using the terminal).
Byte and Switch (Part 2)
In part 1 we talked about the use of a MOSFET for a power switch. Here's a different circuit that also uses a MOSFET, this time as a switch for signals:
We have a thermistor Rth that is located somewhere in an assembly, that connects to a circuit board. This acts as a variable resistor that changes with temperature. If we use it in a voltage divider, the midpoint of the voltage divider has a voltage that depends on temperature. Resistors R3 and R4 form our reference resistance; when...
Elliptic Curve Cryptography - Security Considerations
The security of elliptic curve cryptography is determined by the elliptic curve discrete log problem. This article explains what that means. A comparison with real number logarithm and modular arithmetic gives context for why it is called a log problem.
Data Hiding in C
Strictly speaking, C is not an object-oriented language. Although it provides some features that fit into the object-oriented paradigm it has never had the full object-oriented focus that its successor C++ offers. C++ introduced some very useful concepts and abilities that I miss when I’m developing in ANSI C. One such concept is protected member variables and functions.
When you declare a class in C++ you can also declare member variables and functions as part of that class. Often, these...
Elliptic Curve Cryptography
Secure online communications require encryption. One standard is AES (Advanced Encryption Standard) from NIST. But for this to work, both sides need the same key for encryption and decryption. This is called Private Key encryption.
Linear Feedback Shift Registers for the Uninitiated, Part VII: LFSR Implementations, Idiomatic C, and Compiler Explorer
The last four articles were on algorithms used to compute with finite fields and shift registers:
- multiplicative inverse
- discrete logarithm
- determining characteristic polynomial from the LFSR output
Today we’re going to come back down to earth and show how to implement LFSR updates on a microcontroller. We’ll also talk a little bit about something called “idiomatic C” and a neat online tool for experimenting with the C compiler.
Margin Call: Fermi Problems, Highway Horrors, Black Swans, and Why You Should Worry About When You Should Worry
“Reports that say that something hasn’t happened are always interesting to me, because as we know, there are known knowns; there are things we know that we know. There are known unknowns; that is to say, there are things that we now know we don’t know. But there are also unknown unknowns — there are things we do not know we don’t know.” — Donald Rumsfeld, February 2002
Today’s topic is engineering margin.
XKCD had a what-if column involving Fermi...
Launch of Youtube Channel: My First Videos - Embedded World 2017
I went to Embedded World 2017 in Nuremberg with an ambitious plan; I would make video highlights of several exhibits (booths) to be presented to the *Related sites audience. I would try to make the vendors focus their pitch on the essential in order to produce a one to three minutes video per booth.
So far my experience with making videos was limited to family videos, so I knew I had lots of reading to do and lots of Youtube videos and tutorials to watch. Trade shows are...
++i and i++ : what’s the difference?
Although the ++ and -- operators are well known, there are facets of their operation and implementation that are less familiar to many developers.
Watchdog Timer Anti-patterns
The humble watchdog timer has been an essential part of our reliability tool chest for decades now. The way it works is straightforward and easy to understand, and most practical designs are easy to interface with.
There is a wealth of reference material that covers both the theory behind watchdog timers and practical design tips. But what we'll talk about today is of a slightly different nature.
Despite its straightforward operation and long history, the watchdog timer does occasionally get...
Linear Feedback Shift Registers for the Uninitiated, Part VI: Sing Along with the Berlekamp-Massey Algorithm
The last two articles were on discrete logarithms in finite fields — in practical terms, how to take the state \( S \) of an LFSR and its characteristic polynomial \( p(x) \) and figure out how many shift steps are required to go from the state 000...001 to \( S \). If we consider \( S \) as a polynomial bit vector such that \( S = x^k \bmod p(x) \), then this is equivalent to the task of figuring out \( k \) from \( S \) and \( p(x) \).
This time we’re tackling something...
How precise is my measurement?
Some might argue that measurement is a blend of skepticism and faith. While time constraints might make you lean toward faith, some healthy engineering skepticism should bring you back to statistics. This article reviews some practical statistics that can help you satisfy one common question posed by skeptical engineers: “How precise is my measurement?” As we’ll see, by understanding how to answer it, you gain a degree of control over your measurement time.
An accurate, precise...You Will Make Mistakes
</scorpion>: FAILAnyone out there see the TV pilot of Scorpion? Genius hacker squad meets Homeland Security in a fast-paced thriller to save hundreds of airplanes from crashing after LAX air traffic control software upgrade fails and they didn’t save a backup of the old version (ZOMG!!!) so thousands of people are going to die because the planes… well, they just can’t land! They just can’t. Even if the weather is sunny and calm and there could quite possibly...
Finally got a drone!
As a reader of my blog, you already know that I have been making videos lately and thoroughly enjoying the process. When I was in Germany early this summer (and went 280 km/h in a porsche!) to produce SEGGER's 25th anniversary video, the company bought a drone so we could get an aerial shot of the party (at about the 1:35 mark in this video). Since then, I have been obsessing on buying a drone for myself and finally made the move a few weeks ago - I acquired a used DJI...
Trust, but Verify: Examining the Output of an Embedded Compiler
I work with motor control firmware on the Microchip dsPIC33 series of microcontrollers. The vast majority of that firmware is written in C, with only a few percent in assembly. And I got to thinking recently: I programmed in C and C++ on an Intel PC from roughly 1991 to 2009. But I don’t remember ever working with x86 assembly code. Not once. Not even reading it. Which seems odd. I do that all the time with embedded firmware. And I think you should too. Before I say why, here are...
Use Microprogramming to Save Resources and Increase Functionality
IntroductionMicroprogramming is a design approach that every FPGA designer should have in their bag of tricks. I subscribe to the concept that microprogramming is a structured approach to the design of state machines. This is essentially the view of Maurice Wilkes when he first proposed microprogramming in 1951 as an alternative method for the implementation of the control section of a computer. Wilkes was interested in improving the reliability and reducing time needed to implement...
