Shibboleths: The Perils of Voiceless Sibilant Fricatives, Idiot Lights, and Other Binary-Outcome Tests
AS-SALT, JORDAN — Dr. Reza Al-Faisal once had a job offer from Google to work on cutting-edge voice recognition projects. He turned it down. The 37-year-old Stanford-trained professor of engineering at Al-Balqa’ Applied University now leads a small cadre of graduate students in a government-sponsored program to keep Jordanian society secure from what has now become an overwhelming influx of refugees from the Palestinian-controlled West Bank. “Sometimes they visit relatives...
Wye Delta Tee Pi: Observations on Three-Terminal Networks
Today I’m going to talk a little bit about three-terminal linear passive networks. These generally come in two flavors, wye and delta.
Why Wye?The town of Why, Arizona has a strange name that comes from the shape of the original road junction of Arizona State Highways 85 and 86, which was shaped like the letter Y. This is no longer the case, because the state highway department reconfigured the intersection
The Least Interesting Circuit in the World
It does nothing, most of the time.
It cannot compute pi. It won’t oscillate. It doesn’t light up.
Often it makes other circuits stop working.
It is… the least interesting circuit in the world.
What is it?
About 25 years ago, I took a digital computer architecture course, and we were each given use of an ugly briefcase containing a bunch of solderless breadboards and a power supply and switches and LEDs — and a bunch of
Linear Feedback Shift Registers for the Uninitiated, Part XVIII: Primitive Polynomial Generation
Last time we figured out how to reverse-engineer parameters of an unknown CRC computation by providing sample inputs and analyzing the corresponding outputs. One of the things we discovered was that the polynomial \( x^{16} + x^{12} + x^5 + 1 \) used in the 16-bit X.25 CRC is not primitive — which just means that all the nonzero elements in the corresponding quotient ring can’t be generated by powers of \( x \), and therefore the corresponding 16-bit LFSR with taps in bits 0, 5,...
R1C1R2C2: The Two-Pole Passive RC Filter
I keep running into this circuit every year or two, and need to do the same old calculations, which are kind of tiring. So I figured I’d just write up an article and then I can look it up the next time.
This is a two-pole passive RC filter. Doesn’t work as well as an LC filter or an active filter, but it is cheap. We’re going to find out a couple of things about its transfer function.
First let’s find out the transfer function of this circuit:
Not very...
Linear Feedback Shift Registers for the Uninitiated, Part XVII: Reverse-Engineering the CRC
Last time, we continued a discussion about error detection and correction by covering Reed-Solomon encoding. I was going to move on to another topic, but then there was this post on Reddit asking how to determine unknown CRC parameters:
I am seeking to reverse engineer an 8-bit CRC. I don’t know the generator code that’s used, but can lay my hands on any number of output sequences given an input sequence.
This is something I call the “unknown oracle”...
Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...
Linear Feedback Shift Registers for the Uninitiated, Part XV: Error Detection and Correction
Last time, we talked about Gold codes, a specially-constructed set of pseudorandom bit sequences (PRBS) with low mutual cross-correlation, which are used in many spread-spectrum communications systems, including the Global Positioning System.
This time we are wading into the field of error detection and correction, in particular CRCs and Hamming codes.
Ernie, You Have a Banana in Your EarI have had a really really tough time writing this article. I like the...
Linear Regression with Evenly-Spaced Abscissae
What a boring title. I wish I could come up with something snazzier. One word I learned today is studentization, which is just the normalization of errors in a curve-fitting exercise by the sample standard deviation (e.g. point \( x_i \) is \( 0.3\hat{\sigma} \) from the best-fit linear curve, so \( \frac{x_i - \hat{x}_i}{\hat{\sigma}} = 0.3 \)) — Studentize me! would have been nice, but I couldn’t work it into the topic for today. Oh well.
I needed a little break from...
Linear Feedback Shift Registers for the Uninitiated, Part XIV: Gold Codes
Last time we looked at some techniques using LFSR output for system identification, making use of the peculiar autocorrelation properties of pseudorandom bit sequences (PRBS) derived from an LFSR.
This time we’re going to jump back to the field of communications, to look at an invention called Gold codes and why a single maximum-length PRBS isn’t enough to save the world using spread-spectrum technology. We have to cover two little side discussions before we can get into Gold...
Important Programming Concepts (Even on Embedded Systems) Part I: Idempotence
There are literally hundreds, if not thousands, of subtle concepts that contribute to high quality software design. Many of them are well-known, and can be found in books or the Internet. I’m going to highlight a few of the ones I think are important and often overlooked.
But first let’s start with a short diversion. I’m going to make a bold statement: unless you’re a novice, there’s at least one thing in computer programming about which you’ve picked up...
Ten Little Algorithms, Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 3: Welford's Method (And Friends)
- Part 4: Topological Sort
- Part 6: Green’s Theorem and Swept-Area Detection
Today we will be drifting back into the topic of numerical methods, and look at an algorithm that takes in a series of discretely-sampled data points, and estimates the maximum value of...
How to Build a Fixed-Point PI Controller That Just Works: Part II
In Part I we talked about some of the issues around discrete-time proportional-integral (PI) controllers:
- various forms and whether to use the canonical form for z-transforms (don't do it!)
- order of operation in the integral term: whether to scale and then integrate (my recommendation), or integrate and then scale.
- saturation and anti-windup
In this part we'll talk about the issues surrounding fixed-point implementations of PI controllers. First let's recap the conceptual structure...
Zebras Hate You For No Reason: Why Amdahl's Law is Misleading in a World of Cats (And Maybe in Ours Too)
I’ve been wasting far too much of my free time lately on this stupid addicting game called the Kittens Game. It starts so innocently. You are a kitten in a catnip forest. Gather catnip.
And you click on Gather catnip and off you go. Soon you’re hunting unicorns and building Huts and studying Mathematics and Theology and so on. AND IT’S JUST A TEXT GAME! HTML and Javascript, that’s it, no pictures. It’s an example of an
Round Round Get Around: Why Fixed-Point Right-Shifts Are Just Fine
Today’s topic is rounding in embedded systems, or more specifically, why you don’t need to worry about it in many cases.
One of the issues faced in computer arithmetic is that exact arithmetic requires an ever-increasing bit length to avoid overflow. Adding or subtracting two 16-bit integers produces a 17-bit result; multiplying two 16-bit integers produces a 32-bit result. In fixed-point arithmetic we typically multiply and shift right; for example, if we wanted to multiply some...
Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams
Today we're going to talk about data framing and something called COBS, which will make your life easier the next time you use serial communications on an embedded system -- but first, here's a quiz:
Quick Diversion, Part I: Which of the following is the toughest area of electrical engineering? analog circuit design digital circuit design power electronics communications radiofrequency (RF) circuit design electromagnetic...How to Build a Fixed-Point PI Controller That Just Works: Part I
This two-part article explains five tips to make a fixed-point PI controller work well. I am not going to talk about loop tuning -- there are hundreds of articles and books about that; any control-systems course will go over loop tuning enough to help you understand the fundamentals. There will always be some differences for each system you have to control, but the goals are the same: drive the average error to zero, keep the system stable, and maximize performance (keep overshoot and delay...
How to Estimate Encoder Velocity Without Making Stupid Mistakes: Part II (Tracking Loops and PLLs)
Yeeehah! Finally we're ready to tackle some more clever ways to figure out the velocity of a position encoder. In part I, we looked at the basics of velocity estimation. Then in my last article, I talked a little about what's necessary to evaluate different kinds of algorithms. Now it's time to start describing them. We'll cover tracking loops and phase-locked loops in this article, and Luenberger observers in part III.
But first we need a moderately simple, but interesting, example...
Linear Feedback Shift Registers for the Uninitiated, Part XVI: Reed-Solomon Error Correction
Last time, we talked about error correction and detection, covering some basics like Hamming distance, CRCs, and Hamming codes. If you are new to this topic, I would strongly suggest going back to read that article before this one.
This time we are going to cover Reed-Solomon codes. (I had meant to cover this topic in Part XV, but the article was getting to be too long, so I’ve split it roughly in half.) These are one of the workhorses of error-correction, and they are used in...
Important Programming Concepts (Even on Embedded Systems) Part V: State Machines
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part VI: Abstraction
Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.
Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...
Zebras Hate You For No Reason: Why Amdahl's Law is Misleading in a World of Cats (And Maybe in Ours Too)
I’ve been wasting far too much of my free time lately on this stupid addicting game called the Kittens Game. It starts so innocently. You are a kitten in a catnip forest. Gather catnip.
And you click on Gather catnip and off you go. Soon you’re hunting unicorns and building Huts and studying Mathematics and Theology and so on. AND IT’S JUST A TEXT GAME! HTML and Javascript, that’s it, no pictures. It’s an example of an
Analog-to-Digital Confusion: Pitfalls of Driving an ADC
Imagine the following scenario:You're a successful engineer (sounds nice, doesn't it!) working on a project with three or four circuit boards. More than even you can handle, so you give one of them over to your coworker Wayne to design. Wayne graduated two years ago from college. He's smart, he's a quick learner, and he's really fast at designing schematics and laying out circuit boards. It's just that sometimes he takes some shortcuts... but in this case the circuit board is just something...
Help, My Serial Data Has Been Framed: How To Handle Packets When All You Have Are Streams
Today we're going to talk about data framing and something called COBS, which will make your life easier the next time you use serial communications on an embedded system -- but first, here's a quiz:
Quick Diversion, Part I: Which of the following is the toughest area of electrical engineering? analog circuit design digital circuit design power electronics communications radiofrequency (RF) circuit design electromagnetic...Important Programming Concepts (Even on Embedded Systems) Part V: State Machines
Other articles in this series:
- Part I: Idempotence
- Part II: Immutability
- Part III: Volatility
- Part IV: Singletons
- Part VI: Abstraction
Oh, hell, this article just had to be about state machines, didn’t it? State machines! Those damned little circles and arrows and q’s.
Yeah, I know you don’t like them. They bring back bad memories from University, those Mealy and Moore machines with their state transition tables, the ones you had to write up...
10 Circuit Components You Should Know
Chefs have their miscellaneous ingredients, like condensed milk, cream of tartar, and xanthan gum. As engineers, we too have quite our pick of circuits, and a good circuit designer should know what's out there. Not just the bread and butter ingredients like resistors, capacitors, op-amps, and comparators, but the miscellaneous "gadget" components as well.
Here are ten circuit components you may not have heard of, but which are occasionally quite useful.
1. Multifunction gate (
Byte and Switch (Part 1)
Imagine for a minute you have an electromagnet, and a microcontroller, and you want to use the microcontroller to turn the electromagnet on and off. Sounds pretty typical, right?We ask this question on our interviews of entry-level electrical engineers: what do you put between the microcontroller and the electromagnet?We used to think this kind of question was too easy, but there are a surprising number of subtleties here (and maybe a surprising number of job candidates that were missing...
How to Build a Fixed-Point PI Controller That Just Works: Part I
This two-part article explains five tips to make a fixed-point PI controller work well. I am not going to talk about loop tuning -- there are hundreds of articles and books about that; any control-systems course will go over loop tuning enough to help you understand the fundamentals. There will always be some differences for each system you have to control, but the goals are the same: drive the average error to zero, keep the system stable, and maximize performance (keep overshoot and delay...
Ten Little Algorithms, Part 1: Russian Peasant Multiplication
This blog needs some short posts to balance out the long ones, so I thought I’d cover some of the algorithms I’ve used over the years. Like the Euclidean algorithm and Extended Euclidean algorithm and Newton’s method — except those you should know already, and if not, you should be locked in a room until you do. Someday one of them may save your life. Well, you never know.
Other articles in this series:
- Part 1:
Ten Little Algorithms, Part 3: Welford's Method (and Friends)
Other articles in this series:
- Part 1: Russian Peasant Multiplication
- Part 2: The Single-Pole Low-Pass Filter
- Part 4: Topological Sort
- Part 5: Quadratic Extremum Interpolation and Chandrupatla's Method
- Part 6: Green’s Theorem and Swept-Area Detection
Last time we talked about a low-pass filter, and we saw that a one-line...
How to Estimate Encoder Velocity Without Making Stupid Mistakes: Part II (Tracking Loops and PLLs)
Yeeehah! Finally we're ready to tackle some more clever ways to figure out the velocity of a position encoder. In part I, we looked at the basics of velocity estimation. Then in my last article, I talked a little about what's necessary to evaluate different kinds of algorithms. Now it's time to start describing them. We'll cover tracking loops and phase-locked loops in this article, and Luenberger observers in part III.
But first we need a moderately simple, but interesting, example...